
新零售的大数据之路: 不是分析,而是应用
在我们分析过的大型线下零售业数据里,有销售额位列北京TOP10的大型百货商场以及北京排名前列的奥特莱斯,其数据量包含了上千万笔交易,以及数百个品牌,上百万人的交易细节。毫无疑问,这是个非常有意思的分析对象,分析出的结果也像万棱镜一样丰富多彩: 有商品品类的交易特点,有服装品牌的促销效果,有客流涨落的时间规律,也有每个会员的购买特性,甚至还有天气因素对商品销售的影响,如果把这些分析结果都写在A4纸上,恐怕要数百页之多。
如果作为一个数据分析公司, 我们会直接把这个详尽的分析报告打印成为精美的画册,里面包含漂亮的图表,严谨的分析说明,以及一些营销建议 --- 这是一份尽职尽责的分析报告,既展现了我们领先的12维度零售数据分析技术,也体现了我们对于线下零售业的深度理解。
不过, 这不够,因为我们的客户一定会问一个问题:“那么我们应该如何去做呢?”
是的, 面对着几百页厚的分析报告,即便是从报告中建议的优先级工作开展,也是一件繁重的工作,并且把数据分析的结果和线下营销的特点结合起来有很多挑战。
首先,线下营销并不具备电商的宣传渠道方便性。 对于电商而言,发布一个促销活动只要在首页或者促销栏更新一下图片就可以了。而对于线下零售商来说,这是个很难的多选题,即使使用广告都是一个选择的难题: 电梯广告,交通广告,还是微信朋友圈广告?哪个更有效?
其次,对于受众圈层的定位与分层。线下消费者与商业体的联系通常是一张实体会员卡,而这个会员卡在使用时无法做到像电商购物时使用登录限制所保证的精准度,以至于经常出现一个中年定位的会员卡呈现的是青年偏好的购买行为。 因此,在定位一些符合促销条件的消费者时, 往往不仅需要数据分析,还要进行一些模糊的推理性计算,以精准定位客群。
最后,对于各种促销手段效果的评估也是挑战。电商在采集数据时的平台优势可以保证对于促销效果的监控是全链条的,而线下场景则无法实现这个完整链条。线下零售商所使用的最先进的面部识别技术也无法准确捕捉到客户是谁 -- 如果可以-- 那么成本就不是商业体可以承担的了,因此需要巧妙的技术方法来评估促销的最终效果。
因此,如果一家数据分析公司定位于把分析结果提供给线下零售伙伴,其实这个工作最难的部分还没有开始。只有帮助零售伙伴完成从数据分析到数据应用的整个工作流程,才能真正把数据价值发挥出来。根据我们的经验,完成数据分析到数据应用至少还有以下的技术环节:
第一.数据分析平台与数据营销平台的对接。只有把数据分析结果无缝地连接于数据营销平台,才能高效地让分析效果与营销工作结合在一起。这样无需复杂的数据分析师与数据营销团队结合,普通营销人员也可以完成数据营销的筹备与推进工作。
第二.数据营销平台与销售平台的对接。如果没有对于销售平台的支持,那么数据营销将是自说自话,无法体现出数据营销的高效率与精度。
第三.数据平台与消费者体验平台的对接。无论促销的效果有多好,不持续提供让客户满意的体验,终究无法保证长期的竞争力。
而以上所涉及的技术创新与商业环节改造,并非是一日之功,可以说是巨大的挑战,这需要对于数据分析及应用技术以及商业零售知识的综合创新,目前完全切换到数据应用模式的北京商业体也只有斯普瑞斯奥莱这一家线下零售商。通过与蜜枣网的创新数据应用合作,斯普瑞斯奥莱保持了持续的高增长,成为北京东部成长最快速的商业体,同时在会员忠诚度与活跃度方面大幅领先于同业。
斯普瑞斯在与蜜枣网合作前,也购买了商业智慧分析系统,但发现传统的商业智慧系统不仅分析方法相对落后,仅仅提供基础的销售数据综合分析,不能从消费者体验角度提供更好的分析,而且无法直接与营销系统对接,从而使数据分析系统成为割裂的环节,并不能很好地支持营销工作。
而斯普瑞斯奥莱最终选择蜜枣网的全数据平台,就是因为该平台可以把数据分析与数据应用无缝连接起来,销售数据与消费者数据一经产生,即可以根据分析的结果制定相应的营销活动,并通过同一平台直接发送出去,大大提高了营销的效率与效果。
新零售时代,技术有非常丰富的选择,而只有把技术应用于实际的需求环节,技术才有真正的价值。因此,数据不是为分析而生,数据是为应用而生。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19