
全球“大数据战略”面面观
为何要把大数据放到“国家战略”的高度?这是因为,大数据开启了一次重大的时代转型,改变了我们的生活及理解世界的方式。
大数据首先是“大”,是海量数据。国际数据公司估计,全球2012年产生数据总量约2.8泽字节。泽是10的21次方,也就是10万亿亿,2.8泽字节相当于3000多亿部时长两小时的高清电影,连着播放7000多万年也放不完。该公司还预测,全球数据量每隔两年翻一番,2020年达到40泽字节。
但“大”只是表象,大数据的本质是以崭新的思维和技术去分析海量数据,揭示其中隐藏的人类行为等模式,由此可以创新产品、服务和管理,也可以预测未来的趋势。因此,国家、企业甚至每个人,都能从大数据中受益。
“智慧城市”就是大数据服务于民的一个范例。在欧洲,西班牙古老的港口城市桑坦德被选为欧盟试点城市。在面积约为6平方公里的桑坦德市中心,近1万个传感器每隔几分钟把城市的交通、天气、行人动作等数据传到数据中心,公交车发送自己的位置、速度及周边环境,居民也可以成为“人体传感器”,通过智能手机应用程序上传实时数据。
现在,桑坦德市的数据中心能通知市政当局路灯的状况,并根据需要自动调节路灯的亮度。市民通过一个名为“城市脉搏”的手机应用就可以获得整个城市的相关信息。
通过大数据开放来提升政务服务。韩国的“智慧首尔地图”就是各国智慧城市发展策略中的代表。通过一系列的手机应用,市民可以查询残疾人设施、首尔市免费无线网络热点、公厕、餐饮及行政信息。
在2011年,首尔就提出了“智慧首尔2015”计划,目标是到2015年让首尔成为世界上最方便使用智能技术的城市,建成适应未来生活的基础设施、成为有创造力的智慧经济都市。
“智慧首尔2015”计划指出,公共数据已成为具有社会和经济价值的重要国家资产。韩国未来创造科学部预测,大数据产业到2017年可以创造1000个企业,创造5万个以上就业岗位。
大数据被视为创新和生产力提升的下一个前沿。对数据资源的开发利用能力已成为国家竞争力的要素之一,也是国家整体实力的重要体现。由此,数据经济、数据管理、数据强国等新概念应运而生,各国政府也加强对大数据的扶持,并上升到国家战略高度。
美国率先将大数据从商业概念上升到国家战略。2012年3月,美国政府公布了2亿美元的《大数据研究发展计划》,提出通过提高美国从大型复杂数据中提取知识和观点的能力,加快科学与工程研究步伐,加强国家安全。同年11月公布的具体研发计划涉及各级政府、私企及科研机构的多个大数据研究项目。
在日本,安倍内阁于2013年6月发布了“创建最尖端IT国家宣言”,全面阐述了2013年至2020年间以发展开放公共数据和大数据为核心的国家战略,强调“提升日本竞争力,大数据应用不可或缺”。
在英国,政府在2013年注资1.89亿英镑(约3亿美元)发展大数据项目。同年发布的《英国农业技术战略》更是强调英国今后对农业技术的投资将集中在大数据上,让英国的农业科技商业化,将英国打造成农业信息学世界强国。
在大数据红遍全球的背景下,无论是领先发展的欧美,还是迎头赶上的东亚,发展大数据除了加强基础设施建设、加快普及高速互联网,更重在推动数据开放、优先发展推进与民生保障服务相关的数据。
根据中国国务院印发的《促进大数据发展行动纲要》,国家发展改革委有关负责人日前表示,2018年以前,中国要建成国家政府数据统一开放门户,推进政府和公共部门数据资源统一汇聚和集中向社会开放,实现面向社会的政府数据资源一站式开放服务。
新加坡是世界网速最快的国家之一,在2011年6月启用了政府分享公开数据平台,开放了来自60多个公共机构的近9000个数据库。利用开放数据,企业和有关部门已开发了100多项应用,涉及停车信息、公厕甚至野猫管理等。市民只需一个名为“新加坡通行证”的密码,就可以享受相关电子政府服务的便利。
在南半球的澳大利亚,政府信息管理办公室在2013年8月发布了公共服务大数据战略,以“数据属于国有资产,从设计着手保护隐私、数据完整性与程序透明度”等原则出发,推动公共行业利用大数据分析进行服务改革。澳大利亚政府的开放数据平台,目前已涵盖100多个机构部门的1000多个数据库,向公众提供数据下载上的便利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19