
统计之 - Contingency Table
In statistics, a Contingency Table(also referred to as Cross Tabulationor cross tab) is a type of table in a matrix format that displays the(multivariate) frequency distribution of thecategorical variables.The term contingency table was first used by Karl Pearson in "On the Theoryof Contingency and Its Relation to Association and Normal Correlation",[1]part of the Drapers' Company Research Memoirs Biometric Series I published in1904.
A crucial problem of multivariate statistics is finding(direct-)dependence structure underlying the variables contained inhigh-dimensional contingency tables. If some of the conditional independencesare revealed, then even the storage of the data can be done in a smarter way(see Lauritzen (2002)). In order to do this one can use information theoryconcepts, which gain the information only from the distribution of probability,which can be expressed easily from the contingency table by the relative frequencies.
Suppose that we have two variables, sex (male or female) and handedness(right- or left-handed). Further suppose that 100 individuals are randomlysampled from a very large population as part of a study of sex differences inhandedness. A contingency table can be created to display the numbers ofindividuals who are male and right-handed, male and left-handed, female andright-handed, and female and left-handed. Such a contingency table is shown below.
The numbers of the males, females, and right- and left-handedindividuals are called Marginal Totals. The grand total, i.e., the totalnumber of individuals represented in the contingency table, is the number inthe bottom right corner.
The table allows us to see at a glance that the proportionof men who are right-handed is about the same as the proportion of women whoare right-handed although the proportions are not identical. The significanceof the difference between the two proportions can be assessed with a variety ofstatistical tests including Pearson's chi-squared test, the G-test, Fisher'sexact test, and Barnard's test, provided the entries in the table representindividuals randomly sampled from the population about which we want to draw aconclusion. If the proportions of individuals in the different columns varysignificantly between rows (or vice versa), we say that there is a contingencybetween the two variables. In other words, the two variables are notindependent. If there is no contingency, we say that the two variables areindependent.
The example above is the simplest kind of contingency table,a table in which each variable has only two levels; this is called a 2 x 2contingency table. In principle, any number of rows and columns may be used.There may also be more than two variables, but higher order contingency tablesare difficult to represent on paper. The relation between ordinal variables, orbetween ordinal and categorical variables, may also be represented incontingency tables, although such a practice is rare.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10