京公网安备 11010802034615号
经营许可证编号:京B2-20210330
"大数据+人工智能"梦想旅行带你自由飞
都说,人的一生中至少要有两次冲动,一场为奋不顾身的爱情,以及一次说走就走的旅行。
冲动的爱情不见得人人都会遇到,但是说走就走的旅行绝对会是你人生中要经历的一抹色彩。对于80、90,甚至是00后这些中青年来说,自由行往往是勇气、青春、浪漫的象征,“世界那么大,我想去看看,”再也不是一句空话,背起行囊说走就走已经成为了一种新时尚。
对自由行的憧憬总是美好的,但是往往会有一些小事件会把你拉回到现实,除了语言不通这样的尴尬境地外,还存在着出行工具不够完善的行业短板。
对于自由行用户来说,出境前往往会花费大量时间去做规划,了解行程等,但是因为游记信息的有限或者是时效性,“囧”态就会时常发生,比如说,遭遇了迷路,又比如说出行前做足了功课要去心仪的美食店,结果店门却没开……这种尴尬的境遇真的会给旅行体验大打折扣。
驴友们肯定会希望有那么一款神器:“上知天文,下晓地理……”在旅行信息获取渠道匮乏的情况下解决用户痛点,那么,如何才能将大量的旅行数据整合到一起?如何才能让用户摆脱厚重的游记,轻便快捷随时随地获取有效信息?
“这就需要大数据技术以及之上的人工智能技术来提供智能化解决方案。”梦想旅行CEO郭宁如是表示。
在创立梦想旅行之前,郭宁曾在阿里任职总监,主要负责阿里B2B的搜索和广告的算法的业务,之后在360担任高级总监,继续在搜索广告和大数据领域耕耘,技术优势很足,而合作人则是在产品方面有着很大作为,曾在腾讯、360任职产品总监。对于梦想旅行来说,技术可以说是他们的核心优势。
你可以简单的把梦想旅行理解为是旅途中的“智能小管家”。与携程、去哪儿、蚂蜂窝、穷游这种行前准备不同的是,梦想旅行主要是做行中安排,同时可以说对于行中决策这一块,仍然存在着较大的市场空白。梦想旅行正是从这里切入,除了通过大数据将游记碎片化帮助用户做决策外,还基于LBS技术,将信息服务位置化,而这一切全是基于机器学习。通过对全网大数据的挖掘、大数据知识的图谱分析以及智能自动行程规划的安排,将旅行体验大幅度提升。梦想旅行通过不断的抓取全网的一切可能数据,从而实现分钟级的数据更新。为了有更好的体验,梦想旅行细化了很多标签,举个例子:比如说餐饮,可以细致到里面卖什么菜;逛街,会具体到品牌店铺,通过数据挖掘,知识图谱会变得非常巨大。基于知识图谱建立的梦想旅行还可以实现智能自动行程规划,只要你输入大致方向,就可一键生成最适合你的方案。
“我们会找出和用户拥有相似消费习惯、相同标签的人喜欢的路线,再配合用户的个性化数据,即刻创建行程单。”郭宁如是表示,“本质上,梦想旅行就相当于帮用户看了几十万篇游记,然后再帮用户量身定制行程的智能小管家。
据郭宁介绍,截至目前梦想旅行已经覆盖了全球 400 个热门城市、70多个国家,超过百万的用户使用量,以及上亿条点评的收录,涵盖了餐饮、购物、景点、娱乐、租车、酒店等大量信息,及来自真实用户的点评数据。而这些数据都是通过不断优化的爬虫算法,大量收集来自社交网络、平台官网、百科词条、垂直社区等互联网开放数据,并按照地理位置对各信息点进行去重合并,来提高数据的完整性和丰富度。同时采用机器学习技术,挖掘用户评论数据的深层信息,对数据进行结构化和层次化加工,来提升数据的准确性和可利用率。
用郭宁的话来讲就是“我们服务覆盖到城市的每一个景点,在景点周围的一公里都有你喜欢的店。只要到了当地,保证你哪怕只是想去酒店周围的便利店,或者买瓶啤酒或是想吃街边推车卖的面线都是可以找到的。”
梦想旅行通过“大数据+人工智能”的方式为用户提供在境外旅游途中所需的各种信息,让“说走就走”不再成为一句空话。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30