京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS因子分析法-例子解释
因子分析的基本概念和步骤
一、因子分析的意义
在研究实际问题时往往希望尽可能多地收集相关变量,以期望能对问题有比较全面、完整的把握和认识。例如,对高等学校科研状况的评价研究,可能会搜集诸如投入科研活动的人数、立项课题数、项目经费、经费支出、结项课题数、发表论文数、发表专著数、获得奖励数等多项指标;再例如,学生综合评价研究中,可能会搜集诸如基础课成绩、专业基础课成绩、专业课成绩、体育等各类课程的成绩以及累计获得各项奖学金的次数等。虽然收集这些数据需要投入许多精力,虽然它们能够较为全面精确地描述事物,但在实际数据建模时,这些变量未必能真正发挥预期的作用,“投入”和“产出”并非呈合理的正比,反而会给统计分析带来很多问题,可以表现在:
?计算量的问题
由于收集的变量较多,如果这些变量都参与数据建模,无疑会增加分析过程中的计算工作量。虽然,现在的计算技术已得到了迅猛发展,但高维变量和海量数据仍是不容忽视的。
?变量间的相关性问题
收集到的诸多变量之间通常都会存在或多或少的相关性。例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。例如,多元线性回归分析中,如果众多解释变量之间存在较强的相关性,即存在高度的多重共线性,那么会给回归方程的参数估计带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。类似的问题还有很多。
为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。因子分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。
因子分析的概念起源于20世纪初Karl Pearson和Charles Spearmen等人关于智力测验的统计分析。目前,因子分析已成功应用于心理学、医学、气象、地址、经济学等领域,并因此促进了理论的不断丰富和完善。
因子分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,名为因子。通常,因子有以下几个特点:
?因子个数远远少于原有变量的个数
原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。
?因子能够反映原有变量的绝大部分信息
因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。
?因子之间的线性关系并不显著
由原有变量重组出来的因子之间的线性关系较弱,因子参与数据建模能够有效地解决变量多重共线性等给分析应用带来的诸多问题。
?因子具有命名解释性
通常,因子分析产生的因子能够通过各种方式最终获得命名解释性。因子的命名解
spss因子分析 SPSS因子分析法-例子解释
释性有助于对因子分析结果的解释评价,对因子的进一步应用有重要意义。例如,对高校科研情况的因子分析中,如果能够得到两个因子,其中一个因子是对科研人力投入、经费投入、立项项目数等变量的综合,而另一个是对结项项目数、发表论文数、获奖成果数等变量的综合,那么,该因子分析就是较为理想的。因为这两个因子均有命名可解释性,其中一个反映了科研投入方面的情况,可命名为科研投入因子,另一个反映了科研产出方面的情况,可命名为科研产出因子。
总之,因子分析是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。
二、因子分析的基本概念
1、因子分析模型
因子分析模型中,假定每个原始变量由两部分组成:共同因子(common factors)和唯一因子(unique factors)。共同因子是各个原始变量所共有的因子,解释变量之间的相关关系。唯一因子顾名思义是每个原始变量所特有的因子,表示该变量不能被共同因子解释的部分。原始变量与因子分析时抽出的共同因子的相关关系用因子负荷(factor loadings)表示。 因子分析最常用的理论模式如下:
Zj?aj1F1?aj2F2?aj3F3?????ajmFm?Uj(j=1,2,3…,n,n为原始变量总数) 可以用矩阵的形式表示为Z?AF?U。其中F称为因子,由于它们出现在每个原始变量的线性表达式中(原始变量可以用Xj表示,这里模型中实际上是以F线性表示各个原始变量的标准化分数Zj),因此又称为公共因子。因子可理解为高维空间中互相垂直的m个坐标轴,A称为因子载荷矩阵,aji(j?1,2,3...n,i?1,2,3...m)称为因子载荷,是第j个原始变量在第i个因子上的负荷。如果把变量Zj看成m维因子空间中的一个向量,则
相当于多元线性回归模型中的标准化回归系数;U称为aji表示Zj在坐标轴Fi上的投影,
特殊因子,表示了原有变量不能被因子解释的部分,其均值为0,相当于多元线性回归模型中的残差。
其中,
(1)Zj为第j个变量的标准化分数;
(2)Fi(i=1,2,…,m)为共同因素;
(3)m为所有变量共同因素的数目;
(4)Uj为变量Zj的唯一因素;
(5)aji为因素负荷量。
2、因子分析数学模型中的几个相关概念
?因子载荷(因素负荷量factor loadings)
spss因子分析 SPSS因子分析法-例子解释
所谓的因子载荷就是因素结构中,原始变量与因素分析时抽取出共同因素的相关。可以证明,在因子不相关的前提下,因子载荷aji是变量Zj和因子Fi的相关系数,反映了变量Zj与因子Fi的相关程度。因子载荷aji值小于等于1,绝对值越接近1,表明因子Fi与变量Zj的相关性越强。同时,因子载荷aji也反映了因子Fi对解释变量Zj的重要作用和程度。因子载荷作为因子分析模型中的重要统计量,表明了原始变量和共同因子之间的相关关系。因素分析的理想情况,在于个别因素负荷量aji不是很大就是很小,这样每个变量才能与较少的共同因素产生密切关联,如果想要以最少的共同因素数来解释变量间的关系程度,则Uj彼此间或与共同因素间就不能有关联存在。一般说来,负荷量为0.3或更大被认为有意义。所以,当要判断一个因子的意义时,需要查看哪些变量的负荷达到了0.3或0.3以上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27