京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为何大数据会扼杀企业
大数据被很多人吹捧成了大企业的救星:有人说它能预言未来,照亮我们的道路,给古老的商业模式带来新的生机。但是在现实世界中,数据是会杀人的。它能杀死项目,杀死金钱,甚至杀死时间。
25年前,数据的增长速度大约只有每天100GB,而现在,数据的增长速率差不多已达到50,000GB每秒。随着数据量的海量增长,企业也越来越难以凭借自身的能力进行数据分析,从而加大而不是减小了企业战略决策的难度。
时间是我们最宝贵的资源,而数据偷走了我们大量宝贵的时间。我们的感观早已被各种各样的数据淹没。每天我们都会收到数不清的电子邮件、手机短信和提醒消息,每一条信息都会让人分心,降低我们的工作效率。它们将我们抽离了原本该做的事情,迫使我们将注意力放在也许重要、也许不重要的事情上。同理,企业的业务数据也同样多得令人窒息,牵扯了我们的大量精力,已经成了影响企业高效决策的拦路虎。
不妨想象一下,如果有一天,你只会收到对你来说真正重要的信息,而且这些信息还能在正确的时间、在正确的地点找到你,世界将是什么样子。那么你每天至少能多做多少事情?我们将大量的时间耗费在被动消化这些海量信息上,真正用来主动谋划企业发展的时间少之又少。这样既令人心力交瘁,又削弱了企业效能。
更重要的是,数据会令企业丧失精准度。光靠捕捉更多信息并不会自动使企业产生更多价值。有人可能会想,我们收集的数据越多,就越能从中获得好的见解。这种自欺欺人的心态是很危险的。只有当数据能带来准确而重要的见解时,它才是好的数据。
另外,只有与你息息相关的信息才是有用的信息。好的信息必须具备时效性和真实性。然而不幸的是,当企业想从大数据中提取有用的见解时,却经常会起到反效果。举个真实的例子,美国有一个叫麦克·西伊的人是办公用品超市OfficeMax的常客,他的女儿不幸和男友死于一场车祸。OfficeMax不知怎么得知了这个消息,在发给麦克·西伊的自动促销邮件中竟然出现了这样的抬头:“麦克·西伊(女儿死于车祸)。”这并非大数据有意作孽,而是它的相关性(和适宜性)的问题。一个企业要想只收集其确实需要的数据几乎是不可能的,很多时候你收集到的是那些原本不该看到的东西。对于一家公司来说,你收集到的数据很可能是误导性甚至是毁灭性的。大数据虽然能将很多不相关的点连接起来,呈现一幅完整的图画,但是要确保数据的相关性、及时性和真实性,你首先还要正确理解它的背景。
现在,全球每天的数据总量都能达到250万的三次方字节,要想通过大数据获得全面的见解是很难的。你要么会陷入无力分析的境地(因此无法获得见解),要么就更糟糕,你可能会在有限的甚至是被错误解读的数据基础上获得错误的见解。如果没有正确地理解数据的背景,将不啻于椽木求鱼。一些看似有希望改变游戏规则的见解,在实际中却很有可能导致你从游戏中出局。
数据也会扼制你的灵活性。传统的数据分析方法,是将交易系统中的所有数据存放到一个数据仓库里(也有的叫数据湖或数据池),然后运行几套业务智能系统,叫几个或十几个分析师分析上一周的时间,然后把数据导到Excel里,或者做一个PPT。周而复始,得到的见解始终是滞后的。这种数据处理方法其实是一种浪费。由于要处理的数据很多,你得需要很长的时间才能获得有用的或是有可操作性的见解。你需要找到一种透过能繁杂的数据,得到为你的公司量身定制的信息的方法。
当我开车进城的时候,我想知道路上的交通堵不堵,需要多久才能达到目的地。如果有人给我的建议跟我同事上次开车走这条路时一样准确,那我就会不那么依赖GPS应用了。Waze就是这个领域的一款非常强大的应用,因为它截取了所有司机的一个巨大的时间断面的信息。这种全球数据的集中化使得所有用户都能获得与背景环境相关的见解。大数据也需要采取类似的做法。企业现在应该停止在自己公司的范围内积攒业务数据了,而是应该真正利用云计算的规模经济效益,不仅仅做到基础设施与应用的共享,更重要的是做到数据的共享。
如果你想将大量数据变成有价值的见解,你就应该利用一个集中化的全球性平台,因为这样一个平台可以借助大量内部和外部资源消化海量信息。企业将数据收集、管理和分析工作外包出去,就可以使这种通用平台专心研究数据科学,而你只需要集中精力,将它为你量身打造的见解应用在提高企业核心能力、强化企业竞争优势上。
20年前的一场“无软件”运动将世界从线下带到了云端。而今天,我们也需要掀起一场“数据有罪”运动。现在已经到了从收集数据转向让这些数据切实发挥作用的时候了。这将的话,在别人还在空谈“大数据”或疲于内部业务智能项目的时候,我们就能够解放精力进行创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20