
数据挖掘九律,看完不后悔
一位挖掘专家 tom khabaza 提出了挖掘九律,挺好的东西,特别是九这个数字,深得中华文化精髓,有点独孤九剑的意思:
第一,目标律。数据挖掘是一个业务过程,必须得有业务目标。无目的,无过程。
第二,知识律。业务知识贯穿在挖掘这个业务过程的各环节。
第三,准备律。数据获取、数据准备等数据处理耗时占整个挖掘过程的一半。
第四,NFL律。NFL,没有免费的午餐。没有一个固定的算法适用所有的业务问题,特定应用适合的模型只能通过经验发现。
第五,大卫律。要相信,数中必有业务规律。大卫·沃尔金斯最早提出的,故此名。
第六,洞察律。数据挖掘本质上是增强对业务领域的认知。
第七,预测律。数据挖掘基于过去得出模式,并泛化到类似新事物上,这就是预测,但这是统计概念的。
第八,价值律。挖掘模型的最终价值并非模型精度或稳定性,而是驱动业务行动或通过新洞察导致策略改善。
第九,变化律。人不会两次踏入同一条河流。业务在变,目标在变,认识也在变,甚至规律本身也在变,挖掘模型也得与时俱进。
很好, 挖掘者习此九律,必将功力大增,杀敌于无形之中,乃升迁加薪必备胸器。咱可以设想一些场景,看看这九律是怎么灵活运用的。运用这九律的心法是,敌不动我不动,见招拆招,以无招胜有照。
故事开始........:S,挖掘新手,M 为其导师,挖掘高手。一日,S接到任务,走一趟挖掘。过了段时间,他找到 M,M 正在闭目打坐。发生一场对话。
S:师傅,徒儿接到任务,已经开始干了,不出一个月就可大功告成。
M:嗯,不错,什么进展了?
S:我已经安排下去,现在数据准备已经完成,并且建了一个小模。哎呀,您是不知道啊,那个数据太烂,一堆问题,到处是空值,很多信息也是假的,balabala….
M:先别说你的数据,数据准备干了多长时间了?
S:干了一个多月,还蛮符合准备率的吧!
M:这个任务到底要干什么?
S:嗨,就是要找出想搞破坏的人,放心,第一律我牢记于胸。现在还有两个人帮我一起做,一个准备数据,一个建模。
M:那你干什么?
S:我搞业务理解啊,并且运用知识律,搞了一个挖掘过程模板,我们三个就用这个模板进行过程交互,挺好的,什么时候给您瞅瞅。
M:嗯,听起来不错,那你今天来此打扰我清修作甚?
S:您是不知道啊。不是跟你说了,我们还建了一个小模嘛。唉,效果不太好。用分类预测训练了数据,但那个数据实在太差了,感觉那个模型一点都不靠谱,没反应出来什么规律。我们用那个结论在我们三个身上试了一下,结果大家都觉得不对,我们都成了想搞破坏的人,一点都不符合实际情况。
M:你忘了大卫律了?要相信。还有预测律,你这个模型在你们三个身上试验,能证明什么?
S:是啊,我没忘啊。不过要找到规律还需要时间啊。我们要计划在找更多的样本去验证。不过…今天来…确实是无事不登三宝殿…有个事儿…
M:啥事?
S:您前年不是搞了一个犯罪预测嘛,现在很多地方都在用,我想跟这次任务的目标类似,我想能不能就直接把您的模型拉过来训练一下就行了…您那个模型实在是太绝了…
M:哈哈,看来你想偷懒啊,但你怎么能够知道这个模型适用你的任务呢?
S:您的模型我还担心什么啊。主要是这次任务时间紧,我也没办法,先解决了问题吧,能精确定位目标人群就行了,您的模型,肯定很准的。
M:虽然你拍我马屁,但我还是对你很失望啊。挖掘的本质是什么?
S:呃…洞察…我也知道天下没有免费的午餐...但时间太紧,任务太重啊,没您不行啊,您的模型就是我们的法宝啊。
M:唉,不说那是两年前的模型,现在你遇到的情况跟我遇到的情况不一样,现在的犯罪手段也变了各种花样,变化率怎么说的?再说,你为什么如此看重模型的精度,那并非挖掘的终极价值啊!醒悟吧!我代表客户鄙视你!
S:老家伙,你到底是给还是不给?你是想看着我死吗?
M:(仰天长叹)唉,师徒一场,罢了罢了,拿去吧。但你此一去,我们师徒恩断义绝,以后再也不要来见我,再也不要叫我师傅,也不要再别人面前妄称我是你的师傅。走吧,走吧…
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28