京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言:数据规范化、归一化
笔者寄语:规范化主要是因为数据受着单位的影响较大,需要进行量纲化。大致有:最小-最大规范化、均值标准化、小数定标规范化
数据中心化和标准化的意义是一样的,为了消除量纲对数据结构的影响。
1、最小-最大规范化——标准化
也叫离差标准化,是对原始数据的线性变换,将数据映射到[0,1]之间,与功效系数法相同。
标准化 x-min(x) / max(x)-min(x)
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#最小-最大规范化
b1=(data[,1]-min(data[,1]))/(max(data[,1])-min(data[,1]))
b2=(data[,2]-min(data[,2]))/(max(data[,2])-min(data[,2]))
b3=(data[,3]-min(data[,3]))/(max(data[,3])-min(data[,3]))
b4=(data[,4]-min(data[,4]))/(max(data[,4])-min(data[,4]))
data_scatter=cbind(b1,b2,b3,b4)
2、均值标准化法——正态化
正态标准差标准化、零均值规范化等方法,经过处理的数据均值为0,标准差为1。公式
为:
x*=(x-均值)/标准差
因为均值受离群值影响较大,也可以将均值替换成变量的中位数。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#零-均值规范化
data_zscore=scale(data)
3、小数定标规范化
移动变量的小数点位置来将变量映射到[-1,1]
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#小数定标规范化
i1=ceiling(log(max(abs(data[,1])),10))#小数定标的指数
c1=data[,1]/10^i1
i2=ceiling(log(max(abs(data[,2])),10))
c2=data[,2]/10^i2
i3=ceiling(log(max(abs(data[,3])),10))
c3=data[,3]/10^i3
i4=ceiling(log(max(abs(data[,4])),10))
c4=data[,4]/10^i4
data_dot=cbind(c1,c2,c3,c4)
#打印结果
options(digits = 4)#控制输出结果的有效位数
data_dot
代码中,log(x,10)是ln(x)一样;
options可以控制保留四位数小数
4、还原标准化的方法
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
preds=norm.data*sd(data)+mean(data)#还原标准化的数据
5、R语言中的scale函数
scale方法中的两个参数center和scale的解释:
1.center和scale默认为真,即T或者TRUE
2.center为真表示数据中心化
3.scale为真表示数据标准化
中心化=源数据-均值
标准化==中心化之后的数据在除以数据集的标准差,即数据集中的各项数据减去数据集
的均值再除以数据集的标准差。
例如有数据集1, 2, 3, 6, 3,其均值为3,其标准差为1.87,那么标准化之后的数据集
为(1-3)/1.87,(2-3)/1.87,(3-3)/1.87,(6-3)/1.87,(3-3)/1.87,即:-1.069,-
0.535,0,1.604,0
那么以下几种情况是啥意思:
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
scale(x)=scale(x,center=T,scale=T),默认设置
scale(x,center=F,scale=T)代表不进行中心化,直接做标准化;
scale(x,center=T,scale=F)代表中心化
scale(x,center=F,scale=F)代表什么不做,是原来的数据列。
那么与apply族联用
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12