
R语言:数据规范化、归一化
笔者寄语:规范化主要是因为数据受着单位的影响较大,需要进行量纲化。大致有:最小-最大规范化、均值标准化、小数定标规范化
数据中心化和标准化的意义是一样的,为了消除量纲对数据结构的影响。
1、最小-最大规范化——标准化
也叫离差标准化,是对原始数据的线性变换,将数据映射到[0,1]之间,与功效系数法相同。
标准化 x-min(x) / max(x)-min(x)
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#最小-最大规范化
b1=(data[,1]-min(data[,1]))/(max(data[,1])-min(data[,1]))
b2=(data[,2]-min(data[,2]))/(max(data[,2])-min(data[,2]))
b3=(data[,3]-min(data[,3]))/(max(data[,3])-min(data[,3]))
b4=(data[,4]-min(data[,4]))/(max(data[,4])-min(data[,4]))
data_scatter=cbind(b1,b2,b3,b4)
2、均值标准化法——正态化
正态标准差标准化、零均值规范化等方法,经过处理的数据均值为0,标准差为1。公式
为:
x*=(x-均值)/标准差
因为均值受离群值影响较大,也可以将均值替换成变量的中位数。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#零-均值规范化
data_zscore=scale(data)
3、小数定标规范化
移动变量的小数点位置来将变量映射到[-1,1]
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#小数定标规范化
i1=ceiling(log(max(abs(data[,1])),10))#小数定标的指数
c1=data[,1]/10^i1
i2=ceiling(log(max(abs(data[,2])),10))
c2=data[,2]/10^i2
i3=ceiling(log(max(abs(data[,3])),10))
c3=data[,3]/10^i3
i4=ceiling(log(max(abs(data[,4])),10))
c4=data[,4]/10^i4
data_dot=cbind(c1,c2,c3,c4)
#打印结果
options(digits = 4)#控制输出结果的有效位数
data_dot
代码中,log(x,10)是ln(x)一样;
options可以控制保留四位数小数
4、还原标准化的方法
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
preds=norm.data*sd(data)+mean(data)#还原标准化的数据
5、R语言中的scale函数
scale方法中的两个参数center和scale的解释:
1.center和scale默认为真,即T或者TRUE
2.center为真表示数据中心化
3.scale为真表示数据标准化
中心化=源数据-均值
标准化==中心化之后的数据在除以数据集的标准差,即数据集中的各项数据减去数据集
的均值再除以数据集的标准差。
例如有数据集1, 2, 3, 6, 3,其均值为3,其标准差为1.87,那么标准化之后的数据集
为(1-3)/1.87,(2-3)/1.87,(3-3)/1.87,(6-3)/1.87,(3-3)/1.87,即:-1.069,-
0.535,0,1.604,0
那么以下几种情况是啥意思:
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
scale(x)=scale(x,center=T,scale=T),默认设置
scale(x,center=F,scale=T)代表不进行中心化,直接做标准化;
scale(x,center=T,scale=F)代表中心化
scale(x,center=F,scale=F)代表什么不做,是原来的数据列。
那么与apply族联用
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13