
支持向量机(SVM)理论总结系列.线性可分(附带R程序案例:用体重和心脏重量来预测一只猫的性别)
1.名词解释
支持向量机中的机:在机器学习领域,常把一些算法看做一个机器,如分类机(也叫作分类器)
2.问题描述
空间中有很多已知类别的点,现在想用一个面分开他们,并能对未知类别的点很好的识别类别。
3.算法思想
由问题描述可知,现在算法要解决两个问题:
找到一个平面,可以很好的区分不同类别的点,即使分类器的训练误差小,线性可分时要求训练误差为0。
很好的识别未知类别样本的类别,即多大程度上信任该分类器在未知样本上分类的效果。
令满足以上两点的超平面方程为:
图1 画图展示
4.公式推导
这里接着上一步,公式推导如何求w和b,下图2所示。
图2 公式推导
5.程序实现(案例)
案例介绍:用体重和心脏重量来预测一只猫的性别。
#数据集来自MASS包的cats数据集
#下面的程序将实现用体重和心脏重量来预测一只猫的性别
library(e1071)
data(cats,package="MASS")
summary(cats)
inputData=data.frame(cats[, c (2,3)], Sex= as.factor(cats$Sex))
train=inputData[1:108,]#训练集
test=inputData[109:144,]#测试集
#初步建模
x=train[,-3]
y=train[,3]
#核函数选择高斯核函数
model1=svm(x,y,kernel='radial',gamma=if(is.vector(x)) 1 else1/ncol(x))
#计算训练误差,结果显示有14个样本类别错误
z=test[,-3]
zy=test[,3]
zy=as.integer(zy)
pred1=predict(model1,x)
table(pred1,y)
#优化模型
attach(train)#将数据集train按列单独确认为向量
type=c("C-classification","nu-classification","one-classification")
kernel=c("linear","polynomial","radial","sigmoid")
pred2=array(0,dim=c(108,3,4))
accuracy=matrix(0,3,4)
yy=as.integer(y)
for(i in 1:3)
{
for(j in 1:4)
{
pred2[,i,j]=predict(svm(x,y,type=type[i],kernel=kernel[j]),x)
if(i>2) accuracy[i,j]=sum(pred2[,i,j]!=1)
else accuracy[i,j]=sum(pred2[,i,j]!=yy)
}
}
#12种组合算法在训练集上的误差
wrong=matrix(0,3,4)
for(i in 1:3)
{
for(j in 1:4)
{
wrong[i,j]=mean(yy != pred2[,i,j])#错误率占比
}
}
#选择训练集上误差最小的三种组合,计算在测试集上的误差,三种组合在训练集上的错误率分别为0.241,0.259,0.278;三种组合分别是nu-classification+radial、C-classification+linear组合和C-classification+radial组合。
pred3=array(0,dim=c(108,3,4))
for(i in 1:3)
{
for(j in 1:4)
{
pred3[,i,j]=predict(svm(x,y,type=type[i],kernel=kernel[j]),z)
if(i>2) accuracy[i,j]=sum(pred3[,i,j]!=1)
else accuracy[i,j]=sum(pred3[,i,j]!=yy)
}
}
mean(zy != pred3[,2,3])
mean(zy != pred3[,1,1])
mean(zy != pred3[,1,3])
#计算结果分别为0.417,0,0数据分析师培训
#在测试集上错误率为0的两种算法分别是C-classification+linear组合和C-classification+radial组合。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16