京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:人工智能越来越近,智能理财还远吗
楼市于近期经历了一阵“涌动”之后,不少人的投资理财方向发生了转变,同时随着央行加息政策的信号不断释放,许多人士抛开“刚需”的房子,“理投”目光再次转向股票、基金、期货、外汇等方面。这样说有些片面?却也不尽然,起码在大环境的影响下已经出现了这样的端倪。无独有偶,金融市场的另一个发展趋势表现在“智能投顾”上,这种在线金融管理服务模式或将在两三年内得到全面普及。通俗来讲,机器 “理投”并不再是梦,“智能投顾”时代即将到来。
言当其时则应言明其事,我们看好“智能投顾”源于它是现代金融经济发展的必然产物,更是Fintech创新的新阶段。通过以下几个方面来的解析不难发现,“智能投顾”在国内已经具备了开花结果的“土壤”。
大数据时代丰富“互联网金融”形态
当我们打开“外卖”APP,输入地址后,系统自动推荐附近的美食,订过几次餐后,APP就可以时不时的发送符合你“口味”的美食信息……谁都知道,这是大数据的智慧和力量。当今社会,大数据已经渗透到电子商务、O2O、物流配送等各个领域,金融市场也不例外。正如曾经我们对“互联网金融”概念的理解可能仅仅停留在“在线支付工具”、“P2P平台”等,虽然这些新型产物的形态有好有坏,但Ta们都是大数据时代的产物。同样,“智能投顾”的出现,也必将进一步丰富“互联网金融”的形态。
相比人工“理投”顾问服务,“智能投顾”更能彰显大数据的价值。不难看出,机器人理投顾问产品在基于客户自身的理财需求提供投资顾问服务时,正因为通过科学的数据计算,为客户搭建一个客观的投资数据模型,从而减少了人为投资顾问服务中出现的信任、情绪、利益冲突等问题,这对于任何投资者或机构而言都将是更加理想的服务模式,而且“智能投顾”服务成本低但效率极高,同时可“多资产”操作。就好像“附近的美食”一样,与其有人凭借个人感受给你推荐,当然不不上下载一款外卖APP。
“智能投顾”响应政策 推动市场前景明朗化
某种意义上,“智能投顾”的兴起离不开人工智能掀起的新一轮互联网变革浪潮。国家“十三五”战略规划中首次纳入人工智能,规划指出2018
年目标形成千亿级规模市场。而去年5月份开始,国家四部委更是颁布了《“互联网+"人工智能三年行动实施方案》,明确提出要培育发展人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智能化水平。至此之后,无人驾驶、指纹识别等一系列创新科技被提出,人工智能离我们越来越近。“互联网金融”在人工智能的政策推动下有了“智能投顾”的成果,且市场前景更加明朗化。
数据统计显示,未来十年内“智能投顾”的市场总额将达到5万亿美元。咨询机构更是认为,未来五年“智能投顾”的市场复合增长率将达到68%,到2020年,“智能投顾”行业的资产管理规模将突破2.2万亿美元。可以说,在人工智能技术高速发展的带动下,“智能投顾”已经将“互联网金融”市场引领到一个新的阶段,成为投资个人或机构顺应时代潮流的选择。
国内主流“智能投顾”平台领跑Fintech创新
或许我们都没想到,自从2013年余额宝横空出世后,人们的理财意识开始“萌芽”,继而大批的互联网理财产品涌入市场。必须承认,任何一块“蓝海”,总要有主流“开拓者”带来信心。“智能投顾”市场更是如此,业内人士一致看好“智能投顾”的原因也基于目前国内已经出现了相对成熟的“智能投顾”机构来领跑Fintech创新。调查了解到,当下深受欢迎的“智能投顾”平台包括摩羯智投、富善投资、储财云智投、汇财国际、蓝海智投等。
不可避免,无论是投资人还是经纪公司,大家最为关心的还是“智能投顾”平台带来的效益。对比来看,主流平台各有优势,诸如招商银行的摩羯智投拥有大批存量客户,但收益率相对偏低;而富善投资已经在业内有了较高知名度,从而加入门槛也在升高;储财云智投的成长速度很快,创新性的技术革命也让其在2016年脱颖而出,稳定年化收益率达20%;

“理投”人群的接受度日益提高
任何行业涌现新兴分支市场“蓝海”时,最不容忽视的应该是消费群体。就当下“智能投顾”在国内“迈步”的阶段而言,受众集中在中产人群中。这样一来,“智能投顾”就无法回避一些人对其未来普及程度的质疑。但是我们要认识到,80、90后年轻人群作为互联网“原住民”正在走向“智能投顾”领域,Ta们日益成为社会消费群体的中坚力量,也是中产人群的活跃群体,这一点从购物平台、互联网理财产品的用户统计中已经得到确认。
国外比较典型的“智能投顾”平台Kensho现如今已经拥有庞大的用户群体,几乎在投资人群中得到普及。而国内“智能投顾”平台也值得期待,正如“储财云智投”提出要打造中国自己的“Kensho”提供全民参与成为“合伙人”的智投平台。以相关机构对“智能投顾”的目标受众来推算,中国年收入在6万-600万之间的有投资资产人群中,拥有95万亿可支配资产。所谓的中产阶级,已经超过了1亿人。而随着80、90后年轻人群加入到中产“大军”的步伐变快,“智能投顾”的接受度会日益提高。
小 结:
“智能投顾”离我们远吗?通过以上几个方面的分析与了解,我们不难看出机器理财已不再是梦想。或许“智能投顾”市场还将经历行业标准的塑造、技术创新、乃至产生完全符合国内金融行情的“智能投顾”模式等一系列挑战,不过我们有理由相信,在当前互联金融科技持续创新、国家政策正向引导的大背景下,故事的谱写正当其时,值得期待……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06