
R语言:排序问题
数据排序
1、sort(),rank(),order()函数
Sort
排序(默认升序,decreasing=T时为降序)
Order
排序(默认升序,decreasing=T时为降序)
在R中,和排序相关的函数主要有三个:sort(),rank(),order()。
sort(x)是对向量x进行排序,返回值排序后的数值向量。rank()是求秩的函数,它的返回值是这个向量中对应元素的“排名”。而order()的返回值是对应“排名”的元素所在向量中的位置。
下面以一小段R代码来举例说明:
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
x<-c(97,93,85,74,32,100,99,67)
sort(x)
[1] 32 67 74 85 93 97 99 100
order(x) #order()的返回值是各个排名的学生成绩所在向量中的位置
[1] 5 8 4 3 2 1 7 6
rank(x) #rank()的返回值是这组学生所对应的排名
[1] 6 5 4 3 1 8 7 2
深入理解一下:
sort()在单变量排序中,效果较好;
order()≈原序号(sort()) 因为可以标记排序好之后的下标,在数据框中的排序操作,实用性超强,可以实现:
1、整个数据集按照某个变量(比如:按月份大小)排序;
2、整个数据集其中某个变量依据第二个变量(比如:月份)排序。
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
iris;iris[1:10,]
names(iris)
#单数据列,两者相同
sort(iris$Sepal.Length)
iris$Sepal.Length[order(iris$Sepal.Length)]
#多数据列,order有奇效
iris[order(iris$setosa),] #按照setosa的大小,重排整个数据集
iris$Sepal.Length[order(iris$setosa)] #按照照setosa的大小,重排Sepal.Length数据列
iris[order(iris$setosa),]$Sepal.Length #与上句异曲同工
与which有一些地方的相似,which可以实现返回服从条件观测的行数。which又与subset子集筛选有关。(详见which、subset子集筛选用法)
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$V1[which(data$V2<0)] #筛选出V1中,V2小于0的数字,跟order的作用些许相似
#order用法
iris$Sepal.Length[order(iris$setosa)] #按照照setosa的大小,重排Sepal.Length数据列
2、dplyr包的一些应用
[plain] view plain copy
print?在CODE上查看代码片派生到我的代码片
#dplyr中基本函数 arrange——数据排序
Hdma_dat[order(Hdma_dat$survived),] #传统方法用order排序
arrange(Hdma_dat,survived) #将survived从小到大排序
arrange(Hdma_dat,desc(survived) #将survived从大到小排序
arrange(Hdma_dat,pclass,desc(survived) #先将pclass从小到大排序,再在那个数据基础上让survived从大到小排序
使用场景(我经常搞错...):
譬如我想知道一组数:b = c(0.9984616870 ,1.0177739597 ,0.0004250664 ,0.0015771710, 1.0177739597)
场景一:最大值的位置信息,我想拿到的数据是每个数值对应的大小次序,升序,理应(3 4.5 1 2 4.5)
那么:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
rank(b)
order(b)
如果降序,就不一样了:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
> order(c(0.9984616870 ,1.0177739597 ,0.0004250664 ,0.0015771710, 1.0177739597) ,decreasing = T)
[1] 2 5 1 4 3
order=rank+sort功能=次序信息(rank)+次序排序(sort)
接下来的两个用法是我很容易搞错的:
我想拿到 降序 + 不排序的次序信息,rank不适合;
降序 + 排序的次序信息,order适合
若:
(1)按照某行顺序从大到小重排另一行:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[order(data$x2)]
(2)按照某行最大值对位的另一行:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[order(data$x2)[1] ]
第二种办法:
[html] view plain copy
print?在CODE上查看代码片派生到我的代码片
data$x1[rank(data$x2) == max值]
注意区别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27