京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与“热”数据_数据分析师
大数据时代的到来既是悄悄的,又是波澜壮阔的,人们还没有完全反应过来时,大数据可视化时代已经到来。在人们平时接触的数据中,有一些数据不仅很多,而且用户访问率很高,但这些数据不一定就是大数据,而是“热”数据。因此就需要我们用“大数据思维”来处理这些数据。
所谓的“热数据”,并不适用于处理大数据的方式。热数据是纯粹的扩展性问题,你需要把系统的性能调整到最佳,降低系统的延迟同时确保它能够被所有提出访问需求的用户访问到。大数据可视化除了作为分析之用,甚至你从来不会去用到它。事实上,除了分析之外,我们可以把大数据“冷冻”起来。尽管有时候我们会把大数据与新鲜快速的记录一起进行分析,但大数据池至少需要从概念上与活动的热数据隔离开来。否则二者会互相造成不良的影响。
将冷热数据分开存储是公认的最佳实践,无论是存储还是应用,它们都是完全不同的数据。信息不对称的后果是扭曲了市场机制的作用,误导了市场信息,造成市场失灵。如果处在普遍的信息数据缺乏状态下,经济行为的不确定性也会增加,往往会降低市场效率。反之,是过犹不及,即便是在上世纪末所谓“信息爆炸”年代,也远不如当前阶段如此快速的信息积累。据统计,互联网上的数据每两年翻一番,而全球绝大多数数据都是最近几年才产生的。面对似乎逐渐“供大于求”的数据,如何找到有用的信息,成为利用大数据可视化工具的关键问题。
最重要的数据也许并不是那些大数据,而是我们所说的热数据。你也许已经建立了大数据系统,时刻准备从大数据金矿上挖掘潜在的价值,但一定不要忽视其他数据的价值。人们对大数据狂热追寻的热度终究会降温,但是大数据分析的价值会继续下去。大数据的重点是如何采取正确的策略、流程和方法去从大数据分析中获得价值,比如需要哪些投资,需要培养哪种技能去实施大数据应用等。
CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31