
Python学习笔记—使用list和tuple
(一)List
1.Python内置的一种数据类型是列表:list。list是一种有序的集合,可以随时添加和删除其中的元素。
比如,列出班里所有同学的名字,就可以用一个list表示:
>>> classmates = ['Michael', 'Bob', 'Tracy']
>>> classmates
['Michael', 'Bob', 'Tracy']
变量classmates就是一个list。
用len()函数可以获得list元素的个数:
>>> len(classmates)
3
2.用索引来访问list中每一个位置的元素,记得索引是从0开始的:
>>> classmates[0]
'Michael'
>>> classmates[1]
'Bob'
>>> classmates[2]
'Tracy'
当索引超出了范围时,Python会报一个IndexError错误,所以,要确保索引不要越界,记得最后一个元素的索引是len(classmates) - 1。
>>> classmates[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range
如果要取最后一个元素,除了计算索引位置外,还可以用-1做索引,直接获取最后一个元素:
>>> classmates[-1]
'Tracy'
以此类推,可以获取倒数第2个、倒数第3个:
>>> classmates[-2]
'Bob'
>>> classmates[-3]
'Michael'
>>> classmates[-4]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range
当然,倒数第4个就越界了。
list是一个可变的有序表,所以,可以往list中追加元素到末尾:
>>> classmates.append('Adam')
>>> classmates
['Michael', 'Bob', 'Tracy', 'Adam']
3.也可以把元素插入到指定的位置,比如索引号为1的位置:
>>> classmates.insert(1, 'Jack')
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy', 'Adam']
4.要删除list末尾的元素,用pop()方法:
>>> classmates.pop()
'Adam'
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy']
要删除指定位置的元素,用pop(i)方法,其中i是索引位置:
>>> classmates.pop(1)
'Jack'
>>> classmates
['Michael', 'Bob', 'Tracy']
5.要把某个元素替换成别的元素,可以直接赋值给对应的索引位置:
>>> classmates[1] = 'Sarah'
>>> classmates
['Michael', 'Sarah', 'Tracy']
list里面的元素的数据类型也可以不同,比如:
>>> L = ['Apple', 123, True]
list元素也可以是另一个list,比如:
>>> s = ['python', 'java', ['asp', 'php'], 'scheme']
>>> len(s)
4
要拿到’PHP’可以写s[2][1],因此s可以看成是一个二维数组,类似的还有三维、四维……数组,不过很少用到。
如果一个list中一个元素也没有,就是一个空的list,它的长度为0:
>>> L = []
>>> len(L)
0
6.对List进行排序,Python提供了两个方法
方法1.用List的内建函数list.sort进行排序
list.sort(func=None, key=None, reverse=False)
Python实例:
>>> list = [2,5,8,9,3]
>>> list
[2,5,8,9,3]
>>> list.sort()
>>> list
[2, 3, 5, 8, 9]
方法2.用序列类型函数sorted(list)进行排序
Python实例:
>>> list = [2,5,8,9,3]
>>> list
[2,5,8,9,3]
>>> sorted(list)
[2, 3, 5, 8, 9]
两种方法的区别:
sorted(list)返回一个对象,可以用作表达式。原来的list不变,生成一个新的排好序的list对象。
list.sort() 不会返回对象,改变原有的list。
其他sort的实例:
实例1:正向排序
>>>L = [2,3,1,4]
>>>L.sort()
>>>L
>>>[1,2,3,4]
实例2:反向排序
>>>L = [2,3,1,4]
>>>L.sort(reverse=True)
>>>L
>>>[4,3,2,1]
切片
1.取一个list或tuple的部分元素是非常常见的操作。比如,一个list如下:
>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
2.取前3个元素,应该怎么做?(L[0],L[1],L[2])
扩展一下,取前N个元素就没辙了。
取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:
>>> r = []
>>> n = 3
>>> for i in range(n):
r.append(L[i])
>>> r
['Michael', 'Sarah', 'Tracy']
3.对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作
对应上面的问题,取前3个元素,用一行代码就可以完成切片:
>>> L[0:3]
['Michael', 'Sarah', 'Tracy']
L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。
4.如果第一个索引是0,还可以省略:
>>> L[:3]
['Michael', 'Sarah', 'Tracy']
5.也可以从索引1开始,取出2个元素出来:
>>> L[1:3]
['Sarah', 'Tracy']
6.类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
记住倒数第一个元素的索引是-1。
7.切片操作十分有用。我们先创建一个0-99的数列:
>>> L = range(100)
>>> L
[0, 1, 2, 3, ..., 99]
8.可以通过切片轻松取出某一段数列。比如前10个数
>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
9.后10个数:
>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
10.什么都不写,只写[:]就可以原样复制一个list:
>>> L[:]
[0, 1, 2, 3, ..., 99]
11.所有数,每5个取一个:
>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
12.前10个数,每两个取一个:
>>> L[:10:2]
[0, 2, 4, 6, 8]
(二)tuple
1.一种有序列表叫元组:tuple。
2.tuple和list非常类似,但是tuple一旦初始化就不能修改,比如同样是列出同学的名字:
>>> classmates = ('Michael', 'Bob', 'Tracy')
3.现在,classmates这个tuple不能变了,它也没有append(),insert()这样的方法。其他获取元素的方法和list是一样的,你可以正常地使用classmates[0],classmates[-1],但不能赋值成另外的元素。
4.不可变的tuple有什么意义?因为tuple不可变,所以代码更安全。如果可能,能用tuple代替list就尽量用tuple。
5.如果要定义一个空的tuple,可以写成():
>>> t = ()
>>> t
()
但是,要定义一个只有1个元素的tuple,如果你这么定义:
>>> t = (1)
>>> t
1
定义的不是tuple,是1这个数!这是因为括号()既可以表示tuple,又可以表示数学公式中的小括号,这就产生了歧义,因此,Python规定,这种情况下,按小括号进行计算,计算结果自然是1。
所以,只有1个元素的tuple定义时必须加一个逗号,,来消除歧义:
>>> t = (1,)
>>> t
(1,)
6.Python在显示只有1个元素的tuple时,也会加一个逗号,,以免你误解成数学计算意义上的括号。
7.tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:
>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)
字符串’xxx’或Unicode字符串u’xxx’也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:数据分析师培训
>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'
有了切片操作,很多地方循环就不再需要了。Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29