
SAS、R如何手动输入数据
一道简单的题目,将下面的数据分别手动输入到SAS和R中,如何实现?
一、SAS
解决方案:
data cust_base_info;
inputcust_no$ name$sex$ is_marriage$birthday:yymmdd10.aum_m_avgods_date:yymmdd10.@@;
format birthday yymmdd10. ods_date yymmdd10.;
cards;
1LiMingMaleTRUE1984052151428.0620170331
2ZhangHongyiFemaleTRUE198201285203.420170331
3WangSimingMaleFALSE19830806214820170331
4ZhangCongMaleTRUE19830225110092.820170331
5LiuYingFemaleTRUE1988092038004.520170331
6MaMingyueFemaleFALSE198910191168020170331
;
run;
结果:
备注:
(1)字符型的变量需要在变量名后加上'$'符,比如:'cust_no$','name$';数值型变量就不需要,比如:'aum_m_avg'。
(2)日期型的变量,比如'birthday',需要加上相应的格式,比如:'birthday:yymmdd10.'和'format birthday yymmdd10.'。
(3)'@@'表示即时输入时不换行,SAS按照输入的顺序依次读取数据。
二、R语言
解决方案:
##在R中手动输入数据
cust_no <- c('1','2','3','4','5','6')
name<-c('LiMing','ZhangHongyi','WangSiming','ZhangCong','LiuYing','MaMingyue')
sex<-c('Male','Female','Male','Male','Female','Female')
is_marriage<-c('True','True','False','True','True','False')
##R语言中日期的默认输入格式为yyyy-mm-dd
birthday <- c('1984-05-31','1982-01-28','1983-08-06','1983-02-25','1988-09-20','1989-10-19')
##将日期的类型由字符型转化为date型
birthday <- as.Date(birthday)
aum_m_avg<- c(51428.06,5203.4,2148,110092.8,38004.5,11680)
##数据处理日期,由字符型转为date型
ods_date<- as.Date(rep('2017-03-31',6))
cust_base_info<- data.frame(cust_no,name,sex,is_marriage,birthday,aum_m_avg,ods_date)
##查看数据前6行
head(cust_base_info)
结果:
三、小结
手动输入数据,数值型变量最好处理,字符型变量加些格式,也好处理。难点在于日期的输入。
1、SAS中,需要在input时在变量后面加上特殊的日期格式,比如'ods_date:yymmdd10.'和'format ods_date yymmdd10.'。
2、R语言中,默认的输入格式是'yyyy-mm-dd',比如'1984-05-31'。输入完成后,因为它是字符型变量,需要将它用as.Date()函数转化为date型,例如birthday <- as.Date(birthday)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23