
sas字符变量基于bad_rate分组
最近因为模型拟合的不理想的原因,sas信用评分的内容可能要停更一两周了,因为我还没能进行到模型评分卡这一步就被跨期验证给拍下来了,我做的模型,训练的数据以及测试的数据指标都还不错,跨期验证指标掉的厉害。希望有经验的大神可以在留言区给我点建议,因为你们的建议可以让我少走很多弯路。我现在要重新调整,至于怎么调整的内容,我后面会做一个总结的文章,讲对于指标达不到指标的时候可以有什么方便调整下指标,在这些方法之后还调整不了指标的再回头看变量。
这次分享的代码是字符变量依据bad_rate做的一个分组。之前分享过给予基尼系数,给予iv值的,那么这次就叫基于bad_rate的吧。这次的代码可能会比之前的代码容易理解很多,而这次的代码也是我的partner陈先生写的。不要问我陈先生是谁,这是个秘密。
%macrodatasplit(data,target,group);
proc sql;
create table csm_CASH_MODEL_Train_rank1(
table_name varchar(100)
,col_name varchar(50)
,rank_name numeric
,low numeric
,up numeric
,cnt numeric
,rate numeric
,n1 numeric
,bad_rate numeric
,woe numeric
,iv numeric
,split_type numeric);
quit;
proc sql;
create table csm_CASH_MODEL_Train_rank2(
table_name varchar(100)
,col_name varchar(50)
,rank_name varchar(2000)
,lownumeric ,, ,up numeric
,cnt numeric
,rate numeric
,n1 numeric
,bad_rate numeric
,woe numeric
,iv numeric
,split_type numeric);
quit;
proc sql;/*获得总记录数、总坏客户数、总好客户数*/
select count(*),SUM(&target.),count(*)-SUM(&target.) into :record_cnt,
:bad_cnt,
:good_cnt
from &data.;
quit;
proc contents/*获取输入数据集的所有变量信息*/
data=&data.
out=CASH_SELECT_MODEL_VALID_V10_CONT
noprint;
run;
data CASH_SELECT_MODEL_VALID_V10_CONT;
set CASH_SELECT_MODEL_VALID_V10_CONT;
where name ^='&target.';
run;
data _null_;
set CASH_SELECT_MODEL_VALID_V10_CONT;
call symput(compress("numobs"),compress(_n_));
run;
%doi=1%to&numobs;
%put&NUMOBS.||&i.;
data _null_;
pointer=&i.;
set CASH_SELECT_MODEL_VALID_V10_CONT POINT=POINTER;
call symput('col_name', NAME);
call symput('TYPE', put(TYPE,1.));
stop;
run;
%if&TYPE.=2%then%do;
proc sql;
create table &col_name.as select
&col_name.
,sum(&target.)/count(1) as bad_rate
,sum(&target.) as &target.
,count(1) as num
from &data.
group by &col_name.;
quit;
%put&col_name;
%put&type;
proc sql;
select count(1) into:valuenum from &col_name;
quit;
%if&valuenum.>&group.%then%do;
proc rank data= &col_name out = data_rank ties = mean groups = &group.descending;
var bad_rate;
ranks group_name;
run;
proc sql;
create table &data.as
select *,
b.group_name as new_&col_name.
from &data.a
left join data_rank b
ona.&col_name.=b.&col_name.;
quit;
proc sql;
insert into csm_CASH_MODEL_Train_rank1(table_name ,col_name ,rank_name ,low ,up,cnt,rate,n1,bad_rate,woe,iv,split_type)
select"csm_CASH_MODEL_Train_rank","&col_name",group_name ,min(bad_rate) ,max(bad_rate) ,sum(num)
,sum(num)/&record_cnt
,sum(&target.)
,sum(&target.)/sum(num)
,log((ifn(sum(&target.)=0,0.001,sum(&target.))/&bad_cnt)/((sum(num)-sum(&target.))/&good_cnt))
,(sum(&target.)/&bad_cnt-(sum(num)-sum(&target.))/&good_cnt)*log((ifn(sum(&target.)=0,0.001,sum(&target.))/&bad_cnt)/((sum(num)-sum(&target.))/&good_cnt))
,&group.
from data_rank
group by group_name;
quit;
%end;
%if&valuenum.<=&group.%then%do;
proc sql;
insert into csm_CASH_MODEL_Train_rank2( table_name ,col_name ,rank_name ,low,up,cnt,rate ,n1 ,bad_rate,woe ,iv ,split_type)
select"csm_CASH_MODEL_Train_rank","&col_name",&col_name.,min(bad_rate) ,max(bad_rate) ,sum(num),sum(num)/&record_cnt
,sum(&target.),sum(&target.)/sum(num)
,log((ifn(sum(&target.)=0,0.001,sum(&target.))/&bad_cnt)/((sum(num)-sum(&target.))/&good_cnt))
,(sum(&target.)/&bad_cnt-(sum(num)-sum(&target.))/&good_cnt)*log((ifn(sum(&target.)=0,0.001,sum(&target.))/&bad_cnt)/((sum(num)-sum(&target.))/&good_cnt))
,&valuenum
from &col_name.
group by &col_name.;
quit;
%end;
%end;
%end;
data csm_CASH_MODEL_Train_rank1;
set csm_CASH_MODEL_Train_rank1;
rank_name1=put(rank_name,$8.);
drop rank_name;
rename rank_name1=rank_name;
run;
data csm_CASH_MODEL_Train_rank;
set csm_CASH_MODEL_Train_rank1 csm_CASH_MODEL_Train_rank2;
run;
%mend;
关于这个代码的使用呢,就是下面这样子啦。
Data:填入你的数据集,重点来啦,这个数据集也是等下的产出的数据集,所以你突然觉得,惨了,我拿错数据集,那么你就得重新跑下这个数据集,因为经过这个过程他已经被改变了。
Target:因变量
Group;你要分的组数。
还有说下这个代码,因为是针对字符的分组,就意味着要是有点变量的观测情况就只用3种,那怎么分五组呢,譬如性别啊,你活生生的要是把男女分成5组,这就不道德了哈,所以代码中对于观测情况少于你的分组数的就不分组了。
说下结果哈:
变量指标统计表:
产出的表中就有图中的这些指标,low以及up是bad_rate的区间。Cnt是分组统计的人数,n1是坏客户的数量。后面的split_type是分成几组。宏里面设定的5组,所以显示的是5。
码表:
这张表是码表。名字为每个变量的名字,譬如你这个变量叫loan_cnt,那么你找到一个数据叫loan_cnt就是loan_cnt的码表。这个码表不是你等下一个一个按照主表去leftjoin的哈。这个主表只要是想你之后要生成评分或者做数据集验证的时候可以用的。数据分析师培训
最后就是主表:
为什么刚才说码表不是主表连的呢,因为生成的主表里面已经有新的分组,new_开头的就是新生成的变量。便于后面的区分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17