
sas批量删除重复超过90%的变量
22年前的今天我的妈咪把我带来这个世界,费尽心思把我养到这么大,我就是4月份出生的大白羊,我的生日愿望呢,就是想有个大神在留言板块教我一个怎么识别组合变量更好解释因变量的方法,譬如我怎么知道年龄和婚姻两个变量在一起的效果比单个的效果还要好,但是年龄和性别组合效果并没有那么好。跪求大神实现我的生日愿望吧。
今天还是没有要更新信用评分的内容,更新的内容是关于变量处理中的问题,之前的文章中有过变量处理的章节,这篇文章是对那篇的补充,之前讲过我会把缺失值达到70%的变量删掉。我漏掉一个问题就是变量的重复值达到90%也应该删掉,譬如一个变量有5中情况:ABCDE,但是A的情况的占比就达到90%的时候,除非这个变量剩下的10%全部都是逾期的,不然这样的变量是没有意义,所以今天分享的代码就是批量找出这些变量并在原数据集中删掉。这次的代码也是陈先生提供的。我在陈先生代码的基础上做了一些改动并调试了。
话不多说,上代码:
%macrovar_namelist(data=,tarvar=,dsor=);
%letlib=%upcase(%scan(&data.,1,'.'));
%letdname=%upcase(%scan(&data.,2,'.'));
%globalvar_list var_num;
proc sql ;
create table &dsor.as
select name
from sashelp.VCOLUMN
where left(libname)="&lib."and left(memname)="&dname."and lowcase(name)^=lowcase("&tarvar.");
quit;
%mend;
%macrotest(data,tarvar,data_result,data_drop,rate);
proc datasets lib=work;
delete base;
run;
data base;
length variable$100.;
run;
%var_namelist(data=&data.,/*coltype=num,*/tarvar=&tarvar.,dsor=aa);
data _null_;
set aa;
call symput(compress("var"||left(_n_)),compress(name));
call symput(compress("n"),compress(_n_));
run;
%put&n.;
%doi=1%to&n.;
%put&&var&i.;
proc freq data=&data.(keep=&&var&i.) noprint;
tables &&var&i./out=PERCENT_&&var&i.;
/*(keep=PERCENT)*/
run;
proc sql;
select max(PERCENT) into: max_percent from
PERCENT_&&var&i.;
quit;
%if&max_percent>&rate.%then%do;
data next;
variable="&&var&i.";
run;
proc append base=base data=next force;
run;
%end;
proc datasets lib=work noprint;
delete PERCENT_&&var&i.;
run;
%end;
data base;
set base(where=(variable^=''));
run;
proc transpose data=base out=base1(drop=_name_);
id variable;
run;
/*这步是删除单一变量超过90的重复值的缺失值的可以按照这个写下*/
proc sql noprint;
select name into :var_list separated by' '
from sashelp.VCOLUMN
where upcase(left(libname))="WORK"and UPCASE(left(memname))="BASE1";
quit;
%PUT&var_num1.;
data &data_result.;
set &data.;
drop &var_list.;
run;
data &data_drop.;
set &data.;
keep &tarvar.&var_list.;
run;
%mend;
第一宏不用管,那是为了嵌套在第二个宏里面的。那么接下来介绍下这个宏怎么用。
test(data,tarvar,data_result,data_drop,rate);
data:填入的原数据集。
Tarvar:填入你不想要统计的变量。可以是你的主键也可以是你的因变量,随便你。像我填入的是因变量。
data_result:结果数据集,你的结果数据想叫什么就填什么把。
Data_drop:删掉的变量存放的数据集,给你检查一下有没有错删变量。
Rate:填入的是你觉得重复值达到多少的时候就删掉。我建议的80-90。
下周分享的一个变量人工分段的一个代码。这个代码是我当下除了最优分段之外觉得好用的代码,因为最优分段需要做异常值的检查。有时候异常值检查不好,容易分组的分的不好。这是我个人的经验哈,对于变量分段我之前很崇尚自动分组,我觉得那么多的变量,我一个一个的去细看这无非浪费我的时间,但是我失败的经验告诉我,模型的过程每一步的都应该细致并且仔细,该人工的时候还是要人工,如果全部可以全自动化,那么只要自动运行代码就可以了,谁都可以建模了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23