京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据驱动教育变革与创新
当前,教育大数据研究和应用已经引起我国政府的高度重视。国务院《促进大数据发展行动纲要》提出“探索发挥大数据对变革教育方式、促进教育公平、提升教育质量的支撑作用”,《教育信息化“十三五”规划》强调积极发挥教育大数据在教育管理平台建设和学习空间应用等方面的重要作用。“十三五”期间,大数据与教育的深度融合已成为必然趋势。可以预见,在今后一段时间我国教育大数据研究和应用将获得更快发展。
大数据给教育行业带来重大影响
大数据技术是21世纪最具时代标志的技术之一。国务院发布的《促进大数据发展行动纲要》中提出“大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合”。
大数据给教育行业带来了重大影响。基于大数据的精确学情诊断、个性化学习分析和智能决策支持,大大提升了教育品质,对促进教育公平、提高教育质量、优化教育治理都具有重要作用,已成为实现教育现代化必不可少的重要支撑。教育大数据的主要作用突出体现在:
第一,有利于促进个性化学习。基于大数据,可以精细刻画学生特点、洞察学生学习需求、引导学生学习过程、诊断学生学习结果。通过对学习者学习背景和过程相关的各种数据测量、收集和分析,从海量学生相关的数据中归纳分析各自的学习风格和学习行为,进而提供个性化的学习支持。例如美国亚利桑那州立大学运用Knewton在线教育服务系统来提高学生的数学水平,系统通过数据分析区分出每个学生的优缺点并提供有针对性指导,全校2000名学生使用该系统两学期之后,毕业率从64%升高到75%,学生成绩也获得大幅增长。
第二,有利于实现差异化教学。大数据可以在保障教育规模的情况下实现差异化,一方面可以因材施教,教师可以根据学生的不同需求推荐合适的学习资源,另一方面可以达成更大的教育规模。比如,MOOC(慕课)平台突破了传统教育中实体教室的限制,课程受众面极广,能同时满足数十万学习者学习需求。在教学过程中,MOOC平台可依托大数据构建学习者体验模型对其线上课程进行评估,进行线上课程的再设计、改变课程学习顺序、优化教学策略,为每一个学习者提供不同的教学服务,从而实现规模化下的多样化、个性化教学。
第三,有利于实施精细化管理。传统教育环境下,教育管理部门或决策制定者依据的数据是受限的,一般是静态的、局部的、零散的、滞后的数据,或是逐级申报、过滤加工后的数据。很多时候只能凭经验在做管理、决策。大数据根据社会各方面的综合数据来源,可实现实时精确观察和分析,对于推进教育管理从经验型、粗放型、封闭型向精细化、智能化、可视化转变具有重要意义。以学校课程设计为例,美国加州马鞍山学院所开发的SHERPA(高等教育个性化服务建议助理系统),能根据学生的喜好为他们的课程、时段和可选节次作出推荐,帮助学校课程设计咨询专家解决学生所面临的选课难题。此外,该系统还通过智能分析为教师和课程设计者提供反馈,使他们能有的放矢改进教材。
第四,有利于提供智能化服务。大数据可以采集分析管理者、家长、教师、学生的各方面行为记录,全面提升服务质量,为学习者、教师、家长等提供更好的服务。对教育大数据的全面收集、准确分析、合理利用,已成为学校提升服务能力,形成用数据说话、用数据决策、用数据管理,利用数据开展精准服务的驱动力。如在择校服务方面,运用大数据智能分析技术可助力破解教育择校感性化难题,推进理性择校。美国教育科学院推出的“高校导航(college navigator)”项目,该项目通过对全美7000多所高校各类资源指标(如所在地区、学费、奖学金资助、入学率和毕业率等)进行大数据分析并对所有大学进行排序和筛选,进而帮助家长和学生找到理想中的大学。
我国教育大数据开发利用面临难题
我国教育大数据开发利用已经具备一定基础,但还面临不少问题。自《教育信息化十年发展规划(2011-2020年)》颁布实施以来,通过建设教育资源公共服务平台和教育管理公共服务平台积累了教育教学和教育管理两方面大量数据;同时,我国在基于大规模在线开放课程的数据汇聚方面也已初具规模,这都为开展教育大数据研究和应用提供了一定基础。然而,还存在以下不足:
第一,数据类型比较单一。不是实时采集,很多是结果性数据,而并不是及时的、过程性数据。
第二,数据规模还很不够,目前通过“两平台”和第三方服务机构积累的数据量相比于我国庞大教育规模而言还较为有限,难以满足深度挖掘分析的需求。
第三,缺乏对教育数据的深度分析、挖掘、利用。对海量教育数据的挖掘分析具有很强的专业性,缺乏有效的技术、工具、产品、服务。
第四,跨界数据的整合不够。教育行业的很多应用需求不是光靠教育系统内部的数据能分析的,还需进行跨界数据整合,比如人口数据、地理数据等对于提升教育治理水平就具有重要价值。
第五,对大数据研究和开发的支持力度不足、队伍不强。我国虽已发布大数据的国家发展计划,但对于教育大数据的各项研究还需要更多关注,不仅需要尽快考虑在教育大数据研究专项等方面进行布局,还需要一批既懂技术又懂教育的专业机构和人员,目前我们在力量准备上有所不足。
第六,教育大数据标准与安全问题面临挑战。对教育大数据的准确、规范、统一使用和管理缺乏相应法律法规和技术标准支持,在教育大数据共享、开放、交换、交易、安全等方面的有效监管和规范还不太到位,制约教育大数据的健康发展。
如何积极稳妥发展我国教育大数据
为积极稳妥发展我国教育大数据,笔者认为应注意以下问题:
第一,制定大数据教育应用的宏观规划和行动计划。基于国家大数据驱动战略,尽快编制我国教育行业大数据研究、开发、应用的宏观规划和行动计划方案,指导各级教育管理部门、教育机构推进教育大数据开发和应用。
第二,加强我国教育大数据基础建设。依托现有国家教育资源公共服务平台、中小学生学籍系统等基础数据库,建立覆盖全国的教育大数据基础平台和管理体系,一方面有利于充分挖掘利用,另一方面有利于合理监管。
第三,积极开展教育大数据的应用创新和示范。以教育机构、企事业单位为依托,在全国建立若干教育大数据应用示范区、示范点,在个性化学习服务、教育管理决策等方面开展有针对性的应用创新示范,为后续推广积累经验。
第四,大幅提升我国教育大数据服务创新能力。成立教育大数据联盟,组建专业团队,启动专项工程,针对教育大数据基本理论、关键技术和应用模式开展研究,聚焦学生核心素养、高考改革等教育热点问题,开展应用示范。
第五,加快推进我国教育大数据标准规范和法律法规建设。积极制定教育大数据采集、交易等相关法律法规,尽快启动教育大数据相关标准规范研究制定工作,保障教育大数据的安全、规范获取和及时、有效利用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31