
Python存储对象 (pickle包,cPickle包)
在之前对Python对象的介绍中 (面向对象的基本概念,面向对象的进一步拓展),我提到过Python“一切皆对象”的哲学,在Python中,无论是变量还是函数,都是一个对象。当Python运行时,对象存储在内存中,随时等待系统的调用。然而,内存里的数据会随着计算机关机和消失,如何将对象保存到文件,并储存在硬盘上呢?
计算机的内存中存储的是二进制的序列 (当然,在Linux眼中,是文本流)。我们可以直接将某个对象所对应位置的数据抓取下来,转换成文本流 (这个过程叫做serialize),然后将文本流存入到文件中。由于Python在创建对象时,要参考对象的类定义,所以当我们从文本中读取对象时,必须在手边要有该对象的类定义,才能懂得如何去重建这一对象。从文件读取时,对于Python的内建(built-in)对象 (比如说整数、词典、表等等),由于其类定义已经载入内存,所以不需要我们再在程序中定义类。但对于用户自行定义的对象,就必须要先定义类,然后才能从文件中载入对象 (比如面向对象的基本概念中的对象那个summer)。
pickle包
对于上述过程,最常用的工具是Python中的pickle包。
1) 将内存中的对象转换成为文本流:
import pickle
# define class
class Bird(object):
have_feather = True
way_of_reproduction = 'egg'
summer = Bird() # construct an object
picklestring = pickle.dumps(summer) # serialize object
使用pickle.dumps()方法可以将对象summer转换成了字符串 picklestring(也就是文本流)。随后我们可以用普通文本的存储方法来将该字符串储存在文件(文本文件的输入输出)。
当然,我们也可以使用pickle.dump()的方法,将上面两部合二为一:
import pickle
# define class
class Bird(object):
have_feather = True
way_of_reproduction = 'egg'
summer = Bird() # construct an object
fn = 'a.pkl'
with open(fn, 'w') as f: # open file with write-mode
picklestring = pickle.dump(summer, f) # serialize and save object
对象summer存储在文件a.pkl
2) 重建对象
首先,我们要从文本中读出文本,存储到字符串 (文本文件的输入输出)。然后使用pickle.loads(str)的方法,将字符串转换成为对象。要记得,此时我们的程序中必须已经有了该对象的类定义。
此外,我们也可以使用pickle.load()的方法,将上面步骤合并:
import pickle
# define the class before unpickle
class Bird(object):
have_feather = True
way_of_reproduction = 'egg'
fn = 'a.pkl'
with open(fn, 'r') as f:
summer = pickle.load(f) # read file and build object
cPickle包
cPickle包的功能和用法与pickle包几乎完全相同 (其存在差别的地方实际上很少用到),不同在于cPickle是基于c语言编写的,速度是pickle包的1000倍。对于上面的例子,如果想使用cPickle包,我们都可以将import语句改为:数据分析师培训
import cPickle as pickle
就不需要再做任何改动了。
总结
对象 -> 文本 -> 文件
pickle.dump(), pickle.load(), cPickle
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23