
Python子进程 (subprocess包)
subprocess以及常用的封装函数
当我们运行python的时候,我们都是在创建并运行一个进程。正如我们在Linux进程基础中介绍的那样,一个进程可以fork一个子进程,并让这个子进程exec另外一个程序。在Python中,我们通过标准库中的subprocess包来fork一个子进程,并运行一个外部的程序(fork,exec见Linux进程基础)。
subprocess包中定义有数个创建子进程的函数,这些函数分别以不同的方式创建子进程,所以我们可以根据需要来从中选取一个使用。另外subprocess还提供了一些管理标准流(standard stream)和管道(pipe)的工具,从而在进程间使用文本通信。
使用subprocess包中的函数创建子进程的时候,要注意:
1) 在创建子进程之后,父进程是否暂停,并等待子进程运行。
2) 函数返回什么
3) 当returncode不为0时,父进程如何处理。
subprocess.call()
父进程等待子进程完成
返回退出信息(returncode,相当于exit code,见Linux进程基础)
subprocess.check_call()
父进程等待子进程完成
返回0
检查退出信息,如果returncode不为0,则举出错误subprocess.CalledProcessError,该对象包含有returncode属性,可用try...except...来检查(见Python错误处理)。
subprocess.check_output()
父进程等待子进程完成
返回子进程向标准输出的输出结果
检查退出信息,如果returncode不为0,则举出错误subprocess.CalledProcessError,该对象包含有returncode属性和output属性,output属性为标准输出的输出结果,可用try...except...来检查。
这三个函数的使用方法相类似,我们以subprocess.call()来说明:
import subprocess
rc = subprocess.call(["ls","-l"])
我们将程序名(ls)和所带的参数(-l)一起放在一个表中传递给subprocess.call()
可以通过一个shell来解释一整个字符串:
import subprocess
out = subprocess.call("ls -l", shell=True)
out = subprocess.call("cd ..", shell=True)
我们使用了shell=True这个参数。这个时候,我们使用一整个字符串,而不是一个表来运行子进程。Python将先运行一个shell,再用这个shell来解释这整个字符串。
shell命令中有一些是shell的内建命令,这些命令必须通过shell运行,$cd。shell=True允许我们运行这样一些命令。
Popen()
实际上,我们上面的三个函数都是基于Popen()的封装(wrapper)。这些封装的目的在于让我们容易使用子进程。当我们想要更个性化我们的需求的时候,就要转向Popen类,该类生成的对象用来代表子进程。
与上面的封装不同,Popen对象创建后,主程序不会自动等待子进程完成。我们必须调用对象的wait()方法,父进程才会等待 (也就是阻塞block):
import subprocess
child = subprocess.Popen(["ping","-c","5","www.google.com"])
print("parent process")
从运行结果中看到,父进程在开启子进程之后并没有等待child的完成,而是直接运行print。
对比等待的情况:
import subprocess
child = subprocess.Popen(["ping","-c","5","www.google.com"])
child.wait()
print("parent process")
此外,你还可以在父进程中对子进程进行其它操作,比如我们上面例子中的child对象:
child.poll() # 检查子进程状态
child.kill() # 终止子进程
child.send_signal() # 向子进程发送信号
child.terminate() # 终止子进程
子进程的PID存储在child.pid
子进程的文本流控制
(沿用child子进程) 子进程的标准输入,标准输出和标准错误也可以通过如下属性表示:
child.stdin
child.stdout
child.stderr
我们可以在Popen()建立子进程的时候改变标准输入、标准输出和标准错误,并可以利用subprocess.PIPE将多个子进程的输入和输出连接在一起,构成管道(pipe):
import subprocess
child1 = subprocess.Popen(["ls","-l"], stdout=subprocess.PIPE)
child2 = subprocess.Popen(["wc"], stdin=child1.stdout,stdout=subprocess.PIPE)
out = child2.communicate()
print(out)
subprocess.PIPE实际上为文本流提供一个缓存区。child1的stdout将文本输出到缓存区,随后child2的stdin从该PIPE中将文本读取走。child2的输出文本也被存放在PIPE中,直到communicate()方法从PIPE中读取出PIPE中的文本。
要注意的是,communicate()是Popen对象的一个方法,该方法会阻塞父进程,直到子进程完成。
我们还可以利用communicate()方法来使用PIPE给子进程输入:
import subprocess
child = subprocess.Popen(["cat"], stdin=subprocess.PIPE)
child.communicate("vamei")
我们启动子进程之后,cat会等待输入,直到我们用communicate()输入"vamei"。
通过使用subprocess包,我们可以运行外部程序。这极大的拓展了Python的功能。如果你已经了解了操作系统的某些应用,你可以从Python中直接调用该应用(而不是完全依赖Python),并将应用的结果输出给Python,并让Python继续处理。shell的功能(比如利用文本流连接各个应用),就可以在Python中实现。数据分析师培训
总结
subprocess.call, subprocess.check_call(), subprocess.check_output()
subprocess.Popen(), subprocess.PIPE
Popen.wait(), Popen.communicate()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29