京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用简单的分析发现运营的秘密之:构成分析
一提到数据分析,很多人立刻会联想到眼花缭乱的数据、高大上的工具、高深莫测的算法,认为那些东西离自己很远而望而却步。其实,数据分析不一定都要用得上复杂的工具和高深的算法,一些简单易行的基础分析方法同样可以具有非凡的洞察力。今天我们就简单聊一聊基础分析方法之一:构成分析。
构成分析也叫做结构分析或比例分析,是用来分析和揭示一种事物的组成部分及其占比的一种普遍性分析方法。利用构成分析,我们可以知道话务类别、投诉原因、客户群体、员工表现等多个方面的构成要素,从而确定进一步分析与改进的目标及优先级顺序。
首先,我们来看一下某中心的当前人工话务构成:
人工话量构成示例
当你看到这个数据的时候会首先想到什么呢?从运营的角度来讲,重复来电占比高意味着接听率不理想、首解率不理想、宝贵的人工工时的“浪费”以及客户的负面感知。那么“降低重复来电占比”就很自然的成为工作量优化以及人工效能提升优先考虑的对象。
除了话量构成,我们还可以同样用这种简洁有力的方法来查看各话务类型占比、各联络渠道业务承接量占比、解决与未解决占比、总工时消耗占比等等各种构成情况。
日常运营管理中,优化平均处理时长(AHT)是提升人均产能和整体产能的关键举措之一。而如何发现通话时长的瓶颈既优化点是这项工作的前提。运用构成分析,我们可以把典型的通话流程进行解构(见下图),针对每一个关键环节进行消耗时长的测量,然后再从总体差异、节点差异等方面进行进一步的对比与剖析,从而找到各个环节的优化空间。
通话流程时长分解
再看下面的客户与话务构成对比分析:
客户的联络频率并不是均匀的,很多客户可能常年都不会联络你,有些客户一有问题就会联络你,还有些客户有事没事就喜欢联络你。我们不能直接左右客户的行为,但分析、引导与预防工作还是要做的。根据麦肯锡的一项调查结果,呼叫中心51%的来电是由14%的客户发起的。也就是说,14%的客户造就了呼叫中心一半以上的工作量。当我们把客户及来电分别进行构成分析并放在一起做对应对比的时候(如下图),其结果往往会令我们眼前一亮或者心中一惊。那么接下来的工作重点就不言而喻了,这14%的客户群是什么人?他们有什么共同特征?他们的来电原因有什么共性?我们可以采取什么方式进行疏导、预防、甚至控制?
客户与话量的构成对比
正确地定位问题(what)、解构问题(why)是寻找问题解决方法(how)的重要前提,而从最简单的基础分析方法入手,人人都可以是数据分析师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31