
大企业大数据安全现状与构想
当今,社会信息化和网络化的发展导致数据爆炸式增长,同时科学计算、医疗卫生、金融、零售业等各大企业中也有大量数据在不断产生。2012年全球信息总量已经达到2.7ZB,而到2015年这一数值预计会达到8ZB.越来越多的大企业在持续关注数据再利用,同时挖掘大数据的潜在价值.目前,大数据已成为继云计算之后信息技术领域的另一个信息产业增长点。
大数据在大企业中发展仍然面临着许多问题,安全问题是公认的关键问题之一,与其它信息一样,大数据在存储、处理、传输等过程中面临诸多安全风险,具有数据安全与隐私保护需求。但大数据在引入新的安全问题和挑战的同时,也为信息安全领域带来了新的发展契机,即基于大数据的信息安全相关技术,可以反过来用于大数据的安全和隐私保护。
2 大数据研究概述
2.1 大数据来源与特征
普遍的观点认为,大数据是指规模大且复杂、以至于很难用现有数据库管理工具或数据处理应用来处理的数据集.大数据的常见特点包括大规模(volume)、高速性(velocity)和多样性(variety)。
2.2 大数据分析目标
目前大数据分析应用于科学、医药、商业等各个领域,用途差异巨大。但其目标可以归纳为如下几类:
(1)获得知识与推测趋势
人们进行数据分析由来已久,最初且最重要的目的就是获得知识、利用知识.由于大数据包含大量原始、真实信息,大数据分析能够有效地摒弃个体差异,帮助人们透过现象、更准确地把握事物背后的规律.基于挖掘出的知识,可以更准确地对自然或社会现象进行预测。
(2)分析掌握个性化特征
个体活动在满足某些群体特征的同时,也具有鲜明的个性化特征。正如“长尾理论”中那条细长的尾巴那样,这些特征可能千差万别。企业通过长时间、多维度的数据积累,可以分析用户行为规律,更准确地描绘其个体轮廓,为用户提供更好的个性化产品和服务,以及更准确的广告推荐。
(3)通过分析辨识真相
由于大数据来源广泛及其多样性, 在一定程度上它可以帮助实现信息的去伪存真。目前人们开始尝试利用大数据进行虚假信息识别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04