京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析的局限乃传统统计学问题
大数据”已成为当今炙手可热的科技,商务、医疗、社交、教育、政务等领域纷纷广泛采用“大数据”技术去提升应用系统的智能及效率。
“大数据”分析之潜在问题
“大数据”的广泛应用始于美国。自从美国总统奥巴马2012年3月推出2亿美元的“大数据研究及发展计划”后,世界各大小经济体陆续仿效,大力投资相关领域。全球资讯科技企业亦不敢怠慢,积极推出适合的大数据资讯科技方案及产品,更大洒金钱推广大数据分析的优点及其所能带来的商机。据观察,近期不少从事金融、医疗、社会工作、工商业、政务等范畴主管都已被潜移默化,鼓吹“大数据”的功能及效益。然而,“大数据”真的是万能的吗?本文引用不同的国际专家报告,反映“大数据”分析之潜在问题。
首篇报告题为《谷歌流感的比喻:大数据分析的陷阱》("The Parable of Google Flu : Traps of Big DataAnalytics"),描述了谷歌公司曾利用“大数据”分析推算2011/2012年度美国流感的趋势,但结果却强差人意,估计的流感个案数目远超过实际数目。而谷歌利用的数据是来自用户使用的关键词(如“禽流感”)次数及分布作推算分析。专家认为构成严重误差的主要原因是谷歌盲目地广泛收集关键词,以为越多越好,却没有了解用户查询时的出发点,结果收集得的数据大部分来自非流感病患者,因此在数据采集阶段已严重犯错,自然推算失准。若数据分析全力集中在流感病患者,结果便会截然不同。
第二位专家是美国加州大学伯克利分校的国际知名学者米高佐敦(MichaelJordon)教授,他最近接受美国IEEE学会杂志访问,在题为"Machine-LearningMaestro Michael Jordan on the Delusions of Big Data and Other Huge EngineeringEfforts" 一文中指出,“大数据”在现今商业市场被过分炒作,它最后可能只是一场空欢喜,教授更预测“大数据”的“冬天”即将来临。他认为“大数据”用户作出假设的速度将会超越大数据的统计范畴,在这情况下数据分析结果难免会出现错误,造成大量噪音,影响推算的可靠性。
从另一角度看,“大数据”用户往往忽略数据的“动力”(dynamics)。例如在变幻无常的商务环境中,用户的需求不停在变,那么昨天的“大数据”分析结果能有效地应用于今天的商务环境吗?能够满足用户今天的需求吗?若然不能,我们需要重新进行分析,但昨天采集商务数据的方法能满足用户今天的新需求吗?归根究底,什么时候开始分析及什么时候停止既是统计学应用的老问题,亦是“大数据”分析必须严肃面对的问题,但在千变万化的应用及数据环境下,要应对这个问题更是难上加难。因此佐敦教授进一步指出“大数据”分析服务提供者有责任清楚说明分析推算法的质量标准及其误差度,做好用户的“期望管理”(Expectation Management)。
“大数据”的十大局限
“前车可鉴”,因此用户在使用“大数据”技术时不容掉以轻心,必须紧慎考虑它在操作上的“盲点”(局限性)。归纳而言,这些“盲点”大致是由于以下网络数据的不健康特性而产生:
- 噪音性:网上数据泛滥,资讯内容五花八门,格式也参差不一。要从中过滤与应用需求无关的数据,既复杂亦耗时。
- 真实性:由于网络资讯自由,即使在找出相关数据之后,内容的真假亦难以分别。例如去年在美国总统大选期间,在网络媒体上謡言满天飞,虚假新闻层出不穷,渗透全美每一角落;“教宗赞助特朗普”、“希拉里向伊斯兰国(IS)贩卖军火”等假新闻在《脸书》上的分享及点评率远比传统纸媒为高。然而,“垃圾入,垃圾出”(Garbage In Garbage Out),基于伪造资讯的“大数据”分析,难免会适得其反。
- 代表性:真实的数据并不一定具代表性。若然系统错误地使用了缺乏代表性的资料作分析的话,结果便会弄巧反拙。
- 完整性:利用非完整的数据进行分析,结果以偏概全,不尽不实,容易引致误判。
- 时效性:某类数据在事件发生当刻可能大派用场,但当事件或时限过后,其影响力未必复再。若然过量的旧数据被用作分析,结果未能反映现况。再者,适时的数据往往因为比旧数据少而很容易被忽略。
- 解释性:在“大数据”的分析过程中,基于输入的数据,算法便会产生及输出分析结果。在分析过程中,数据输入如何产生输出的理据及两者的因果关系并不清晰,如黑箱作业。
- 预测性:世事变幻莫测,以前从未发生过的意外絶不罕见,但却难以预料(分析出来)。因此,有专家认为“大数据”分析是规范的(prescriptive)而不具预测性(predictive)的功能。
- 误导性:使用假资讯或错误分析算法均会影响结果的可靠性。“尽信书则不如无书”,未经核实及验证的分析结果可能会造成严重的反效果。
- 合法性:数据内容、采集方法及其使用过程极有可能涉及个人私隐、商业机密及公众权益等资讯。因此,资讯的安全性和合法性对“大数据”应用十分之关键,可是不少企业只顾赚钱,而罔顾这些因素。
- 价值性:“大数据”不是免费的,企业切忌盲目跟风。数据本身、分析软件等均所费不菲,因此成本效益的衡量是企业采用“大数据”的另一关键考虑点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08