京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据改变食品业的五种方式
大数据分析和数据科学是当下全球企业界的两大流行词。令人想不到的是,使用它们的不仅有大公司,还有中小企业。无论公司大小,数据都是一笔宝贵的资产,不管是结构化、半结构化还是非结构化数据。大数据分析使企业决策者可以真正了解消费者的需求,优化营销宣传,实现动态定价,更有效地服务于客户。
食品行业由于其规模和经营特点,更应该采用大数据。根据《财富》杂志的报道,“食品类初创企业获得的风险投资达到28亿美元。”尽管食品行业的规模很难确定,但《福布斯》杂志指出,据欧睿国际(Euromonitor International)估计,包装食品行业(比如方便面、食用油、罐装和冷冻食品)的规模接近1.6万亿欧元。另外,根据世界银行的报告,食品和农业部门占到了全球GDP的10%,而且随着人口的增长和消费者行为的变化,这一比例还会提高。购买食品的消费者和购买原料的企业留下了巨大的数字足迹,这还不包括在食品供应链内部,大量交易留下的数字足迹。
那么,大数据如何在食品行业发挥作用呢?以下是大数据在食品行业的几种用途。
找出客人真正喜欢的口味
通过来自论坛、社交媒体、视频网站、图片分享网站、点评网站和其他地方的数据,可以实时了解消费者的喜好,同时也能获知竞争对手吸引顾客的方式。这种市场信息是无价的,企业据此可以知道应该销售哪类产品、该投资什么,以及哪些食品被认为是健康或是不健康的。目前,服务于电信客户的咨询公司已将这些技巧应用于论坛和社交媒体。我们没有理由认为不能将同样的技巧应用于食品业。Fabrikatyr Analytics已经在电信和航空业取得了一系列成功。
做出更美味的菜肴
美味的菜肴将为餐厅带来回头客。分析用餐者的反馈有助于做出新颖独特、令人垂涎的菜肴。最近,一群数据科学家从美食论坛和菜谱中挖掘数据,弄清楚了印度食物的口味。这是个很好的例子,说明数据科学可以用于食品业,帮助厨师和餐厅管理者调整菜谱,从而改善顾客体验,让菜品更受欢迎。
找出不同地区的用餐特点
在不同地区拥有连锁店的餐厅,可以利用大数据来发现各地的食物偏好,甚至可以将一个地区的美食引入另一个地区,作为特色菜供应。从林林总总的美食论坛上,我们可以知道哪些食物正在流行,哪些快餐又将成为新的潮流。想想看,如果你早已知道美国的Chipotle或英国的Nando’s将成为快餐市场上的领导者,那会怎么样?以往,食品行业也有过引领潮流的产品,但这两家公司却将墨西哥卷饼和葡式烤鸡做成了畅销品。为什么不能把文本分析或大数据分析用于这样的市场趋势?眼下,Zalando已经在时装业开展了这方面的尝试,推出了“时装趋势分析”项目。
需求规划
近日,知名风投公司A16Z的科技播客采访了送餐类初创企业Gobble的创始人。她说,数据科学是他们在市场中的竞争优势,有了数据科学,他们可以提供更好的用户体验,还能优化库存,降低成本。数据科学让Blue Apron和Gobble这样的公司能够凭借更好的用户服务,颠覆食品行业,同时还能利用算法来预测需求,优化库存。这无疑对老牌食品企业提出了挑战。抱残守缺的企业将被更加灵活的竞争对手击败。
选址规划
如果你想为特定类型的餐厅预测最佳选址,数据将为你提供帮助。你可以利用import.io得到当地餐厅的信息,再利用data.gov等政府网站得到重要的商业信息,比如人口特点和餐厅数量。这些信息都可以用于选址,甚至用来创建盈利模式。Booking.com就利用这样的数据,为网站上的酒店排序。为何不利用这样的数据来规划选址呢?
这进一步表明,“数据革命”才刚刚开始,它将对食品业等传统行业产生愈加深刻的影响。未来,我们将看到更多这样的例子:更加个性化的食品、更合理的需求规划、孟山都等公司的精密种植,此外,还有很多用途是现如今我们尚无法想象的。食品行业的一些从业者或许认为,大数据对他们并不重要。然而在音乐、图书等行业,我们已经见识了大数据的威力。食品业会有什么不同吗?我想不到合乎逻辑的理由。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04