京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下的数据挖掘简析
随着大数据的兴起,隐藏在大数据背后的相关技术也逐渐被揭开神秘的面纱,其中,数据挖掘即是大数据应用过程中非常重要的环节。以下是国内领先的移动大数据服务商极光大数据的副总裁陈宇针对数据挖掘技术的简析,并对比总结了大数据时代下的数据挖掘技术相较于传统数据挖掘的突出优势。
数据挖掘技术概要
从海量的数据库中选择、探索、识别出有效的、新颖的、具有潜在效用的乃至最终可理解的模式以获取商业利益的非平凡的过程就是Fayyad和Piatetsky-Shapiror在1996年提出的数据挖掘的定义。这个定义有三个要点:处理海量的数据;揭示企业运作中的内在规律;为企业运作提供直接决策分析,并带来巨大经济效益。
技术不断演进,社会不断发展,对于数据挖掘的定义也发生了一些变化。例如对于数据量级的变化,从海量已经到了巨量。在1996年的时候,人们是无法想象2017年我们将会处理如此巨大的数据。而数据处理的样本规模也在从采样发展到全量,例如极光大数据在处理关键人的同轨分析特征识别的时候,会处理几百亿的位置信息轨迹,从中提炼出具有相同轨迹的设备信息,从而通过设备信息关联出自然人的相互关系等等。
同时,相对于1996年,数据应用发掘企业的内在规律已经拓展到了社会运行特征、人群行为特征、经济发展特征等等各个方面。而数据挖掘的目的也不仅是为了经济效益,也对社会生产力提升和管理水平提升提供了相应支持。
数据挖掘过程的关键点
传统数据挖掘过程一般采用如下过程:
数据挖掘的过程
在大数据时代,数据挖掘的过程本质相同,但是有如下差异:
大数据时代数据挖掘的差异
1. 从结构化数据到非结构化数据。传统的数据挖掘都是依据数据库里面的数据进行分析,在大数据时代,数据来源多种多样,对于这些非结构化数据的加工是大数据数据挖掘的重要特征。因为非结构化数据处理的成功与否决定了大数据数据源的质量好坏,而这并不是算法可以解决的。
2. 从抽样数据到全量数据。传统数据挖掘受制于数据处理能力,只能使用少量的抽样数据进行分析。在大数据技术环境下,完全可以实现全量数据的分析,效率甚至可能高于抽样数据的分析。
3. 从因果关系到相关性分析。大数据分析通过事件和多种因素进行相关性分析,通过数据挖掘和机器学习的算法找到其关联关系,并运用回归分析从而实现预测。
数据挖掘的任务按照目标可以分为4类:
1) 分类:通过分析训练集的数据,为每一个分类建立分类分析模型,用这个已知的规律对其他数据进行分类
2) 回归:建立因变量和自变量之间关系的模型
3) 聚类:将对象集合分成由类似的对象组成的多个类的过程
4) 关联规则:寻找给定数据集合中各个因子之间的关联关系
人们经常见到的“逻辑回归模型”、“神经网络模型”、“遗传算法”、“决策树”等等都是监督学习过程的挖掘算法。这类算法在机器学习和深度学习里面大量使用,是大数据公司必备的专业技能。极光大数据作为国内领先的移动大数据服务商,在这方面的实际案例颇多,例如极光大数据团队利用神经网络算法预测个人前往某一个特定区域的概率和时间,准确度可以达到80%以上;他们还利用神经网络算法和随机森林算法对个人喜欢的移动应用进行推荐下载和推荐产品;此外,极光大数据团队还自主开发了空间轨迹相似度STS(spatial trajectory similarity)算法进行同轨分析等。
数据挖掘技术随着大数据时代的到来已变幻出更强的功能特征,而在大数据服务商的精耕细作下,也必将为各行业带来进步的动力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28