
从三大行业看大数据应用的三重境界:数据、分析、成果
各行各业在大数据的应用上可以说是已经渐入佳境,资产管理、运营优化、风险管理等都已经有数据分析参与其中,当然这个过程最重要的还是从业务场景出发让数据真正产生价值。
Teradata把企业数据分析分为四个重要领域——客户体验、多元化数据分析、异构数据整合、海量的业务规模。做好这些也就可以实现大数据应用的三重境界:“数据、分析、成果”。
但在各种因素的影响下,企业在数据应用的过程中也会遇到三大挑战:一、业务层面,在业务场景中分析改进;二、人才层面,人才资源压力是每一个企业都面临的问题;三、架构层面,需要考虑架构的高性能、敏捷性、可扩展性以及成本等因素。
Teradata则可以提供业务分析解决方案、生态系统架构咨询、混合云解决方案。Teradata天睿公司大中华区副总裁、咨询及服务部门总经理唐青(Janet Tang)说,我们希望从业务的视角回答客户的问题,同时我们还有成熟的业务框架和咨询团队,最后就是支撑混合云能力,实现跨平台的输出。
当然大型企业和中小型企业的大数据实施不尽相同,Teradata天睿公司北京金融团队咨询服务部总监张天峰指出,中小企业一般的步骤是诊断、规划、路线图、速赢,重点是找到典型业务场景,扎实落地,实现速赢。
三大行业大数据实战
航空、快递、金融是三个非常典型的服务业,他们都具备数据驱动的特点,三个案例作为行业中的缩影,可以更好地了解大数据在行业中的应用模式和方法。
航空
消费者在选择航空公司时通常会更关心服务和价格,“十三五规划”对于航空业的规划是要在2020年将整体航运能力提升60%。在面对运力上升,运价透明等市场挑战下,航空公司如何做到把握趋势创造市场需求?
基于大数据分析,航空业还有很多业务提升的机会,如航空公司的航线规划,可以通过大数据来分析客流、成本、机型。再比如,有些航班上座率不高,可以使用大数据分析来设计航班的合并取消优化策略以提升运营效率。
航空公司通过算法预测趋势制定经营策略,做到最优的运力和运价。在运价上通过竞争分析、客户预测等一系列数据进行分析。
快递
快递行业在近几年可以称得上是黄金年代,在快速的成长后快递行业逐渐进入到成熟期,这就需要构建健全的管理体系,来面对激烈的市场竞争带来的盈利压力。
快递行业收益管理的三要素是成本分析、网点细分和价格策略。在唐青看来快递业比航空业的竞争更加惨烈,因为快递的供应链长且参与者多,所以要在各个环节上进行优化。
某快递公司的问题是其有很多加盟企业,如何让加盟企业的销售和成本同时纳入到整体管理中。企业最终实现大数据的收集和分析,帮助进行业务的决策,例如成本分析、网点特性、价格体系、预演分析、试点落地、回顾评审、市场(产品)推广等。
金融
金融行业是一个最容易流失客户的行业,原来的银行是以开设更多网点来吸纳客户,现在则需要多种产品组合来打动客户。
某银行基于市场环境提出了二次转型的目标,以客户为中心优化整个营销体系,实现客户精细化管理。识别出客户需要哪些产品,未来需要开拓哪些潜在客户,同时进行客户分级。利用数据分析从产品视角、客户视角得到新的业务商机。Teradata可以帮助金融行业识别客户属于哪一生命周期,通过客户标签系统识别客户行为,最终制定营销策略。
银行的数据基础相对较好,但是依然有很多数据的空白,像市场数据、征信数据,这对于产品成本的核算、定价带来挑战,这需要更多外部数据的补充完善分析结果。
上述三个行业都属于B2C领域,当然服务业除了个人业务还有对公业务。由于业务类型的不同,关注点也有所不同,个人业务更多以客户生命周期来讨论,对公业务更多和监管相关。唐青提到,个人业务更注重交易行为,在结合大数据的可能性上也更加丰富,在风险管控、创新点都走的更为靠前。
现在很多大型企业都把大数据用在精细化运营上,精细化运营对于企业来讲也是一个永久不变的话题,只不过之前太过粗放的管理模式,以及利润率的逐渐降低,也让现阶段的精细化运营显得非常重要,需要通过数据分析提升效率。
Teradata天睿公司华东区咨询服务部专业服务总监陈焰表示,开源、节流越来越要求从数据层面开始解决,例如物流公司看到哪一个航线的收益率更大,这些归根结底都是企业对盈利能力要求的提升。
在精细化运营的同时,企业利用数据分析的最终目的还是实现商业模式的创新。像航空公司基于“一带一路”战略开拓新航线,电信公司寻找数据变现的价值等等。Teradata也在通过其专业服务团队帮助企业建立创新实验室,真正可以创造出新的业务,让数据产生价值的同时实现最大化利用进行变现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19