京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析方法:非正态数据转化成正态数据
大部分的数据分析都希望原始数据是满足正态分布的定距变量。然而,显示是残酷的,在各种研究中,常常需要面对非正态分布的定距数据。为了解决数据的正态性问题,数学家们总结了很多转化方法,但是没有万能神药,都需要对症下药(根据数据的实际分布情况,选择合适的转化方法)。
下面不会介绍具体的转化方法,只是帮助大家理顺正态转化的思路,明白正态转化的逻辑,不至于将正态转化看做神秘领域,高不可攀。
正态转化四步骤
第一步:计算数据的分布状况及两个参数:偏度(Skewness)和峰度(Kurtosis)。
第二步:根据变量的分布形状和参数,决定是否做转换。
1、对称判断
看Skewness(偏差度)的取值。如果偏度为0,则是完全对称(但罕见);如果偏度为正值,则说明该变量的分布为正偏态;如果偏度为负值,则说明该变量的分布为负偏态。然而,偏度值还不能完全判断偏态的分布是否与正态分布有显著差别,所以还需要做显著性检验。如果检验结果显著,我们可能(注意是“可能”)可以通过转换来达到或接近对称。

2、峰度检验
Kurtosis(峰度)是判断曲线陡峭和平缓的指标。如果峰度为0,说明该变量分布合适(但罕见);如果峰度为正值,说明该变量的分布陡峭;反之,如果峰度为负值,说明变量的分布平缓。峰度也需要通过显著检验来判断与正态分布是否有显著差别。我们可能可以通过转换来达到或接近正态分布。
第三步:如果需要做正态转换,根据变量的分布形状,确定相应的转换公式。下面简单介绍3种常见的正态转换方法
1、如果是中度偏态
如果偏度为其标准误差的2-3倍,可以考虑取根号值来转换。
2、如果高度偏态
如果偏度为其标准误差的3倍以上,则可以取对数,其中又可分为自然对数和以10为基数的对数。
3、对于双峰或多峰数据
秩分的正态得分的转化方法,SPSS软件中常用,请关注SPSS视频教程。
第四步:再次检验转换后变量的分布形状。如果没有解决问题,或者甚至恶化,需要再从第二或第三步重新做起,然后再回到第一步的检验。直至达到比较令人满意的结果。
数据正态化注意点
1、偏度和峰度的标准误差与样本量直接有关。具体说来,偏度的标准误差约等于6除以n后的开方,而峰度的标准误差约等于24除以n后的开方,n为样本量。由此可见,样本量越大,标准误差越小。
2、数据的正态转化方法不是通用的,要根据不同的数据分布情况,选择合适的或创造合适的转化公式,转化后必须验证转化效果,最终达到转化的目的。
3、不是所有的非正态分布的数据都能够通过正态转化而转化为正态分布数据。非正态分布的数据也可以使用非参数方法进行分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11