京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据市场持续升温,创业者需知道数据
在互联网及移动互联网时代,中国创业潮一直以来都风生水起,一大批移动互联网企业赴美上市。进入大数据时代,数据不仅为我们的生活工作带来了诸多便利,更是将创业热潮推向了历史高峰。
3月22日,由上海大数据联盟、上海大数据产业基地和华院数据联合主办、数据猿协办的“2017大数据人工智能产业发展与创新应用”论坛上,为挖掘优秀项目及人才,推动科技的创新应用,主办方正式启动了“中国大数据人工智能创新创业大赛”。
参赛团队不仅可以获得科技金融赛题提供的股市行情数据、数据库、舆情信息等数据资源,还会面临全新的赛题挑战,即国内首推K线技术面视觉分析及图文消息面市场影响评估赛题。同时,主办方还联合羽时资产特设2亿专项AI基金,寻找创业独角兽,锁定众多技术大咖,届时一定会吸引大量创新创业者参赛。
在这个“大众创业、万众创新”的时代,尽管创业是一件极具风险、成功率又极低的事情,却仍然吸引着众多年轻人前仆后继加入创业大军。可是还是有很多人都只是“为了创业而创业”。那么,拥有创业热情又不乏计算机技术的年轻人们,该如何找到大数据人工智能的创业入口?如何选对创业方向呢?在回答问题之前,创业者们不妨先来了解一下大数据产业的创投市场。
创业先看投资。创业者在进入任何一个新兴行业之时,都需要有勇气和远见,其“远见”就表现为要清楚知道市场中“钱”的走向,只有清楚投资人把钱投向了哪里,才有机会抓住产业风口,占据市场.
在此次论坛上,数据猿创始人牟蕾指出,2016年,创投圈的“资本寒冬”之声不绝于耳,时不时传出创业项目被否决的消息。投资机构变得更加谨慎,创业者融资周期不断延长。创投圈发生了什么?大数据行业的创业创新是否还有机会?又有多少机会?
对此,牟蕾对2012年-2016年大数据行业投融资情况进行了复盘。数据显示,在2014年,我国大数据市场规模为97亿元,2015、2016年间增长率均高于全球数值,预计2018年,我国大数据市场规模有望超过500亿。与此同时,大数据产业显现出正在向成熟期过渡的发展特点,数据分析、数据应用项目开始受到资本热捧。
具体而言,2012-2016五年间,大数据领域发生的投融资事件超过1600起,透露金额的有1300余起,总金额达1200多亿;其中A轮事件占比40.4%,天使轮38.2%,产业大部分项目处于发展期,部分成熟项目已进入PE阶段。其中,2016年,融资额同比增长率达189.7%,不过融资频次下降,单笔额度过亿,但产业向成熟期发展越发明显。
牟蕾强调,从细分领域投融资趋势看,五年来,数据应用产业内的相关融资事件发生了673起,被披露项目的总金额达483亿,其二级产业中广告营销类融资事件位居首位;而数据分析产业相关融资事件450起,总金额471亿,仅次数据应用产业,其二级产业中分析平台类融资事件占据榜首。从资金走向看,牟蕾还指出,被大资金追棒的项目不外乎两个方向:一是通用技术型项目,这种技术不分行业,比如与人工智能相关的机器学习等底层架构技术;二是行业间的跨界融合,尤其是传统产业与大数据人工智能技术的结合。
此外,记者了解到,此次论坛上启动的“中国大数据人工智能创新创业大赛”,将聚焦于智慧医疗和科技金融两大热门领域。这两大领域与牟蕾的大数据投融资趋势分析结果如出一辙——“目前,金融和人工智能是大数据应用最热的行业,医疗健康和互娱次之”。
如今,大数据产业的高速发展已经渗透到每个行业和职能领域,成为了重要的生产因素;人工智能也已经应用于语音识别、图像处理器、计算机视觉、机器人等多个领域,甚至击败了围棋九段李世石,一系列成绩的背后,都是海量数据的积累与学习。各行业人士对数据的挖掘与应用,预示着新一波创业浪潮即将到来。
此外,牟蕾还向现场嘉宾展示了2012-2016年大数据产业投融资TOP榜。其中,TOP5的投资机构平均投入金额均在30亿元以上;融资大事件的发生地冠、亚军之位是北京(747次)和上海(275次),除苏州、成都仅在2012年上榜之外,此后,深圳、广州和杭州融资愈加活跃。而众所周知,北上广深一直是创业者们的集中营,所以这些城市将一如既往是大数据产业创新的发源地。
创业者们,如果想要选择好的产业风口,创投分析则是对一个产业发展的前置预判。如果一个新兴产业中的很多应用度尚未大面积展开,那么这个行业真正的春天其实是将掌握在众多有“远见”的创业者手中!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07