
四种最常见的SEM数据分析方法,你用过几种
数据分析在SEM中是最为基础的技能,说得简单点,数据分析就是为了发现问题,并为解决问题提供数据参考。有经验的SEMer都知道,尽信数据则不如无数据。数据就躺在哪里,关键在分析之前,你之前要有清晰的思维逻辑:你为什么要分析数据?你希望通过数据分析得到什么?我一般的分析数据逻辑如下:
确定分析的目的—>收集数据—>整理数据—>分析数据—>得到一些分析的思路
今天主要分享下数据分析的常用方法,主要四种:
1、趋势分析方法
2、比重分析方法
3、TOP N分析法/二八原则
4、四象限分析方法。
这也是从接手一个项目到具体的优化措施的数据分析逻辑。老规矩,能用图片说明的就不用文字。
趋势分析法又叫比较分析方法,水平分析方法,主要通过数据连续的相同指标或比率进行定基对比或环比对比,得出他们的变动方向,数额,幅度,来感知整体的趋势。
这种方法粗略而简单,体现的是一个行业的总体趋势。
主要有分析纬度:有时段趋势、逐日趋势、逐周趋势、逐月趋势、逐季节趋势……这个分析法比较简单,一般通过百度指数、百度统计就能掌握这些趋势。重点是根据自己行业,针对不同时间的趋势进行广告策略调整。看几个图片带过:
指相同事物进行归纳分成若干项目,计算各组成部分在总数中所占的比重,分析部分与总数比例关系的一种方法。
在SEM中的应用
有利于帮助SEMer快速掌握企业的核心推广业务、主要推广渠道、主要推广地域等主要贡献者。
从上图中可以看出来,这个账户消费最大的是通用词,其次是品牌词,各占40%左右,而收益最大的是品牌词,占了总体收益的89%,消费更多的通用词收益仅有11%。那么此时应该着重推广哪类词,不言而喻。
TOP N分析法指基于数据的前N名汇总,与其余汇总数据进行对比,从而得到最主要的数据所占的比例和数据效果。
在SEM中的应用
1)类似二八原则,找到消费/效果占比80%的数据,有效帮助定位问题,不然过多的数据把问题复杂化 ;
2)定位出需要持续关注消费或转化的那些重要关键词。
四象限分析法:也叫矩阵分析方法,是指利用两个参考指标,把数据切割为四个小块,从而把杂乱无章的数据切割成四个部分,然后针对每一个小块的数据进行针对化的分析。
四象限在SEM优化中的具体应用:
以上就是SEM数据分析的四种基本方法,掌握了这四种思维方式,再配以娴熟的EXCEL技巧,定会让你的SEM优化工作事半功倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11