
实现智能生产、大规模定制,大数据是基础
大数据是制造业智能化的基础,能够帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。
随着制造技术的进步和现代化管理理念的普及,制造业企业的运营也越来越依赖信息技术,以至于制造业的整个价值链,制造业产品的整个生命周期都涉及诸多的数据,制造业企业的数据也呈现出爆炸性增长的趋势。尤其是随着大规模定制和网络协同的发展,制造业企业还需要实时从网上接受众多消费者的个性化定制数据,并通过网络协同配置各方资源,组织生产,管理更多的各类有关数据。
因此,大数据可能带来的巨大价值正在被传统制造业所认可,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为企业的管理者和参与者呈现出一个全新的看待制造业价值链的方法。
实现智能生产
在“工业4.0”中,通过信息物理系统(CPS)实现工厂/车间的设备传感和控制层的数据与企业信息系统融合,使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导生产。具体而言,生产线、生产设备都将配备传感器,抓取数据,然后经过无线通信连接互联网,传输数据,对生产本身进行实时的监控。而生产中所产生的数据同样经过快速处理、传递,反馈至生产过程中,将工厂升级成为可以被管理和被自适应调整的智能网络,使工业控制和管理最优化,对有限资源进行最大限度地使用,从而降低工业和资源的配置成本,使得生产过程能够高效地进行。
例如在过去,在设备运行的过程中,自然磨损本身会使产品的品质发生一定的变化。伴随信息技术、物联网技术的发展,通过传感器技术实时感知数据,知道产品出了什么故障,哪里需要配件,使得生产过程中的这些因素能够被精确控制,从而真正实现生产的智能化。一定程度上,工厂/车间的传感器所产生的大数据直接决定了“工业4.0”所要求的智能化设备的智能水平。
此外,从生产能耗角度来看,设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情况,由此能够在生产过程中不断实时优化能源的消耗。同时,对所有流程的大数据进行分析,也将会整体大幅降低生产能耗。
实现大规模定制
大数据是制造业智能化的基础,其在制造业大规模定制中的应用包括数据采集、数据管理、订单管理、智能化制造、定制平台等,核心是定制平台。定制数据达到一定的数量级,就可以实现大数据应用,通过对大数据的挖掘,实现流行预测、精准匹配、时尚管理、社交应用、营销推送等更多的应用。同时,大数据能够帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。
利用这些大数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
“工业4.0”的本质是基于信息物理系统(CPS)实现“智能工厂”,使智能设备根据处理后的信息,进行判断、分析、自我调整、自动驱动生产加工,直至最后的产品完成等步骤。可以说,智能工厂已经为最终的制造业大规模定制生产做好了准备。
实现消费者个性化需求,一方面需要制造业企业能够生产提供符合消费者个性偏好的产品或服务,另一方面需要互联网提供消费者的个性化定制需求。由于消费者人数众多,每个人的需求不同,导致需求的具体信息也不同,加上需求的不断变化,就构成了产品需求的大数据。消费者与制造业企业之间的交互和交易行为也将产生大量数据,挖掘和分析这些消费者动态数据,能够帮助消费者参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。制造业企业对这些数据进行处理,进而传递给智能设备,进行数据挖掘、设备调整、原材料准备等步骤,才能生产出符合个性化需求的定制产品
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05