
药店从业者,不能不知的数据分析方法
“按流程做事,用数据说话”
意味着定期进行科学的数据分析,找出门店存在的问题及可以挖掘的潜力,以利于正确开展下一步工作。
药店精细化管理管理实务技术倡导“按流程做事,用数据说话”。数据来源于流程,也正是因为有了流程,我们才有了数据分析。
定期进行科学的数据分析,是门店掌握经营方向的重要手段。但无论哪方面数据,分析只是一个开始,然后是计划、执行、考核。
数据分析的关健是能够找出门店存在的问题及可以挖掘的潜力,指导如何开展下一步工作才是最重要的。
日常数据分析要点
门店日常经营数据主要包括品项数、销售额、毛利额、毛利率、来客数、客单价、库存金额、库存天数、动销率、会员消费占比、各品项销售毛利占比、各货区商品进销存分析。
销售指标分析:
主要分析本月销售情况、本月销售指标完成情况、与去年同期对比情况。通过这组数据的分析可以知道同比销售趋势、实际销售与计划的差距。
销售毛利分析:
主要分析本月毛利率、毛利额情况,与去年同期对比情况。通过这组数据的分析可以知道同比毛利状况,以及是否在商品毛利方面存在不足。
客单价:
顾客单次购买商品的总价格。客人来得再多,可是每次总是购买廉价低档的商品,一样无法实现赢利,让营业员学会怎么去引导顾客去消费。
来客数:
进入店面的目标顾客的多少。零售讲求的是人气。这取决于店面的集客引客能力,与该店位置、定位、装修及连锁总部的营销策划能力密切相关。
商品动销率分析:
主要是本月商品动销品种统计。动销率分析,与上月对比情况。
商品动销率计算公式:动销品种/门店经营总品种数*100,滞销品种数:门店经营总品种数-动销品种数。
通过此组数据及具体单品的分析,可以看出门店在商品经营中存在的问题及潜力。
商品品类分析:
主要是本店本月各品类销售比重及与去年同期对比情况。
门店本月各品种类毛利比重及与去年同期对比情况,门店需对本月所有品类销售与毛利情况,特别是所有销售下降及毛利下降的品类进行全面分析,
并通过分析找出差距,同时提出改进方案。
心脑血管品类销售数据分析
我们先看一个门店心脑血管类销售数据的初步表单(见门店数据表1)。
在Excel中用饼图或仪表盘图示更为直接地显示本月门店销售情况。
根据这些数据,自然可以得出该门店的优势和不足,据此给经营决策提供有力的支持,让门店及时调整商品结构。
由门店数据表2和门店数据表3两个表的数据得知销售数、毛利数、品项数重点是调节血压类和活血化瘀类。
心脑血管类总品项数706,总业绩467738.99元,毛利额39659.22元,其中79个品项销售占80%业绩,35个品项占80%毛利额,166个盈利品项,其中高毛利品项28个,283个零毛利,257个负毛利品项。
药品是特殊商品,某品项数是否增加及增加哪个价格带与毛利带的商品,需要考虑疾病用药链接属性,脑血管用药、降血脂用药、心脏用药。
无论是化学药还是中成药都有先天不足,这也决定了这三个品项中的商品属性链接明显低于调节血压和活血化瘀。
调节血压的分类:
① 、中枢性降压药。可乐定、珍菊降压片、甲基多巴。
② 、肾上腺素受体阻断药。阻断药普萘洛尔(心得安)α1阻断药哌唑嗪、α及β阻断药拉贝洛尔。
③ 、影响交感神经递质的药物。利血平、肼曲嗪、氢氯噻嗪。
④ 、神经节阻断药美加明。
⑤ 、钙拮抗药硝苯地平。
⑥ 、周围血管扩张药肼曲嗪、硝普钠。
⑦ 、血管紧张素转换酶抑制药及血管紧张素Ⅱ受体阻断药卡托普利、氯沙坦、洛沙坦、缬沙坦、伊贝沙坦。
⑧ 、钾离子通道开放剂吡那地尔。
⑨ 、利尿降压药氢氯噻嗪。
⑩ 、其他吲哒帕胺、酮色林。
这些代表药物自然是需要从销售数据中得出门店联合用药有不足之处,因为药品的联合是基于疾病联合的。
比如糖尿病和冠心病等,糖尿病患者并发高血压只能应用普利和地平类。具体如下图4。
结论:
由于心脑血管用药是客流性品类,品牌性很强。
但是仍然有机会去强化第二品牌,但过度强化会造成商品销售的减低,结构不合理,调整替代品牌应取代无效益的品牌。
动销数据组案例分析
我们再看一个门店数据,此数据重点是动销品项、动销率、存销比、周转天数。
这些数据是相互关联的,如动销品项数据的变动,走低来客数也走低,周转天数加长,库存金额增加,客单价呈上升趋势(见门店数据表5)。
数据中反映出的问题警示我们,关注品项数及动销情况,主要是本月商品动销品种统计,动销率分析,与上月对比情况。
商品动销率计算公式:
动销品种/门店经营总品种数*100。
滞销品种数:
门店经营总品种数-动销品种数。
通过此组数据及具体单品的分析,可以看出门店在商品经营中存在的问题及潜力。
从存销比可以反映门店库存的合理程度,其合理范围是小于或等于1.75,如果大于或等于2必须调整。
来客数衰退时,一定是商品问题和管理问题。店长主要是管理者,是次要的销售者,要思考提高来客数,与居委会建立友好关系,掌握详细的商圈顾客信息。
可以从小区名称、小区户数、可否投递、来店频率、预估渗透率、预估来客数进行分析。
影响来客数还有价格问题,要注意促销价格、价格政策商品、商品定价的程度,商圈内来客数很多的,价格是敏感因素。
促销在来客数下滑时就不再是有效的经营改善措施,要懂得建立会员的目的到底是为什么?
其目的就是潜在销售量。
提升来客数,重点是提高商圈内知名度的定向活动、多频次的促销活动扩大商圈宣传范围、考虑相关商品品种、商品结构不能满足该商圈需求的因素、考虑是否商品价格过高的因素等。
透过以上简单的十个数据,再做商圈研究分析,看看商圈户数,在观察分析各品类的销售占比。
把这些数据展开来分析,看看到底是什么影响的,然后做SWOT分析表,最后的行动方案就出来了。将来客数按照优势、劣势、机会、威胁列出来,按月整理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18