京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言答疑:txt文件无法被R正确读入
R语言中,txt无法正确的读入的可能性有很多种。有位网友提供的一个无法正确读入的文本文件,使用记事本打开,看起来一切正确(见图片)。
但读入的时候,报错如下。
>read.table("1.txt")
Error intype.convert(data[], as.is = as.is, dec = dec, numerals = numerals, :
'<ff><fe><67>'多字节字符串有错
此外,Warning messages:
Inread.table("1.txt") : line 1 appears to contain embedded nulls
Inread.table("1.txt") : line 2 appears to contain embedded nulls
Inread.table("1.txt") : line 3 appears to contain embedded nulls
Inread.table("1.txt") : line 4 appears to contain embedded nulls
Inread.table("1.txt") : line 5 appears to contain embedded nulls
Inscan(file = file, what = what, sep = sep, quote = quote, dec = dec,:embedded nul(s) found in input
问题解决
报错提示,文本中包含嵌入的null符号,所以无法正确读取。那么为什么使用记事本打开却一切正常呢?我们试试使用专业的文本编辑器VIM(如果有问题,可以百度VIM)打开(见图片,原文件-VIM)。
注意了,与记事本看起来多了很多符号。因为在记事本下,文本中的很多异常符号是显示不出来的。
符号解释
^@:代表“NULL”符号,本身代表空白,所以在记事本下不显示。
^M: 其实代表window下的回车符。
以上两个符号需要被删除的,否者R可能出现读取错误。
解决方法
1)
将1.txt使用记事本打开,然后复制到excel里。接着将excel里的文本在复制一遍,粘贴到一个新建的txt文件 2.txt里面。再次使用VIM打开,看起来就一切正常了(见图片 修改后-VIM)。
然后,R就可以正常读入了。
2)
在VIM下,将异常符号替换去除。如果熟悉使用VIM的同学,可以使用以下两个命令替换异常符号:
%s/\r//g #备注:替换掉^M
%s/^@//g #备注:替换掉^@, ^@不能直接输入,否者会报错。正确的方法是Shift + Ctrl + 2 来输入^@
另外在R最新版本 3.2.3 的read.table命令 多了一个选项:skipNUL。如果skipNul=TRUE可以自动忽略文件中的NULL符号。不过在这个例子中,由于异常符号^M的存在,即使使用skipNul=TRUE依然是会报错的。需要将^M手动替换去除。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13