京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析和数据处理服务在烟草行业的应用
数据分析和数据处理服务在烟草行业的应用,烟草统计分析作为统计工作重要内容组成,对烟草经济现象各关联面的重大问题和具体问题,深入分析、剖析原因,做好科学地分析推断,提出预见性的决策意见,是烟草统计“全面做好卷烟上水平的统计信息支撑”的关键性工作环节,必须予以重视与加强。作为基层烟草企业应该把统计分析工作当作一项基础性的重要工作来抓好抓实,加强市场信息收集和统计分析工作,
转变观念,注重实践,为统计分析夯实思想基础。开展卷烟零售市场销售管理以及零售客户卷烟经营活动的数据调查活动,营销人员应转变观念,树立求真务实的工作作风。必须从当前卷烟零售市场的实际情况出发,以卷烟零售客户个体为单位,严格规范地开展数据统计分析等实践活动,真正将数据统计分析以及信息收集整理工作纳入到整个卷烟经营企业重要工作中来。通过各类数据统计分析和信息情况反馈及时了解,全面衡量整个卷烟零售市场消费需求趋势和发展动向,为企业领导层制定各类营销政策及科学举措提供重要依据。
拓宽数据资料采集面,为统计分析提供全面的数据来源。随着行业的改革发展,
要全面反映和揭示行业经济现象的内在联系及行业发展的客观规律,就必须掌握多层面、多角度的统计数据,数据掌握得越全面,统计分析和推断的科学性就越强。数据资料采集的方法可以分为两类,一是资料调查法,二是实地调查法。资料调查法具有省时、省人工、省费用的特点,分为企业内部资料调查和企业外部资料调查。内部资料可以从企业内部统计资料、企业财务资料及其他内部资料中查询,这种调查方法。外部资料可以从政府机构、统计局专业机构以及书籍、杂志等资料中查询。实地调查法,具有针对性强、适用面广、材料真实的特点,包括采取实地问卷调查、现场观察、电话调查、邮寄调查、互联网调查等。
提高数据资料的真实性,为统计分析提供真实依据。统计分析是一个系统收集和分析各种有关市场信息资料的过程,其最终目的就是准确、完整、及时地反映市场状况,提示市场发展趋势和规律,为市场营销决策提供依据。统计分析质量的好坏,主要取决于采集的数据资料真实性有多少,数据资料真实性越高,写出来的统计分析质量也就越高。要提高数据资料的真实性,你所采集的数据必须要具备准确性、完整性、及时性的特点。其中准确性是第一位的,它决定了数据的有效性和价值的高低,同时也是统计分析质量好坏的关键性因素和重要标志。不准确的市场调查数据结果是“
失真”的,而由失真的数据组成的统计分析也会失去真正的意义。缺乏完整性的数据结果是残缺不全的,结果也不能准确地反映市场的实际状况,也将导致撰写出来的统计分析陷于片面化。由于市场的瞬息万变,市场调查数据结果的及时性也显得非常重要,只有及时地反映市场现状,准确性和完整性才有意义。
灵活运用多种统计分析方法,提高统计分析的全面性。统计分析一般有定性分析法、定量分析性、定性与定量相结合分析法三种,我们可以结合具体实际情况,灵活运用一种,或是几种方法一起合并运用。定性与定量分析两种方法是相互补充的,定性分析时需要定量的资料来进行说明和补充。在进行定性分析时,要掌握基本的逻辑思维,对于事物的认识要从简单到复杂,从特殊到一般,从偶然到必然,从现象到本质。坚持辨证的观点、发展的观点,从事物的发展变化中观察问题,从事物的相互依存、相互制约中来分析问题,对统计分析具有重要的指导意义。在进行定量分析时,要运用统计学中论述的方法对辖区卷烟销售的数量表现,包括卷烟消费水平、速度、结构比例、事物之间的联系等进行分析。如,对比分析法、综合评价分析法、结构分析法、平衡分析法、动态分析法、因素分析法、相关分析法等。无论采取何种方法进行统计分析时,都需要我们卷烟经营企业的营销人员能够带着任务和重点去开展工作,真正使得统计分析和信息反馈等工作更具全面性、规范性和目的性。
烟草统计分析作为统计工作重要内容组成,对烟草经济现象各关联面的重大问题和具体问题,深入分析、剖析原因,做好科学地分析推断,提出预见性的决策意见,是烟草统计“全面做好卷烟上水平的统计信息支撑”的关键性工作环节,必须予以重视与加强。作为基层烟草企业应该把统计分析工作当作一项基础性的重要工作来抓好抓实,加强市场信息收集和统计分析工作,正确运用和科学分析卷烟零售市场的消费需求变化与发展趋势,时时掌握市场动态,为精准营销、品牌培育和优质服务提供市场依据,为全面做好卷烟上水平提供强有力的统计信息支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08