
sas输出基尼方差,F检验
有时候,我们在建模前期会有一个变量探索的单变量与因变量的数据分析报告,但其实,不同的数据形式有不同的指标来衡量变量与因变量的解释能力
今天的代码介绍的就是单变量与因变量之间的基尼方差,F检验的输出,你会说那proc reg中就有p值的输出啊,为什么要自己写。我个人是觉得proc reg是针对线性回归的,但是我们今天用到的因变量依旧还是二元的分类变量,所以就用我自己写到啦。
01
基尼方差
基尼方差被定义为衡量以下三种情况下变量之间的关联性指标:
1、一个连续变量和一个名字或顺序变量。
2、两个名字变量。
3、两个顺序变量。
这里介绍一个连续变量以及一个名义变量x的情况。介绍之前先明白几个符号的由来
基尼方差可以定义为:
G=1-SSE/STD
02
F检验
F检验衡量的是一个连续变量和一个名义变量之间的关联性,其中,谁是因变量不重要,该检验对两种情况都有效,F检验的统计量定义为:
F=MSTR/MSE
如果x是二元变量,并用0,1表示,F值及其相关联的p值可以用线性回归模型进行计算,模型中的y作为因变量,x作为唯一的自变量,用线性回归计算出来的f值可以用p值进行解释。这里你肯定你懵逼,你这不是打脸吗,说好y是二元的。因为我这部分是只有y和x两个变量,所以谁做因变量都无所谓。p值是可以建立模型的概率,及变量x和y之间无关联的概率。数据分析师培训
终于可以贴代码了!!!
%let DSin=test.SCORE_TOTAL_LIST_TEST_4;
%let Xvar=customer_status;
%let YVar=var1;
%macro CalcGrF(DSin, Xvar, YVar, M_Gr, M_Fstar, M_Pvalue);
proc freq data=&DSin noprint ;
tables &XVar /missing out=Temp_Cats;
run;
Data _null_;
retain N 0;
set Temp_Cats;
N=N+count;
call symput ("X_" || left(_N_), compress(&XVar));
call symput ("n_" || left(_N_), left(count));
call symput ("K", left(_N_));
call symput ("N", left(N));
Run;
proc sql noprint;
select avg(&YVar) into :Ybar from &DSin;
%local i;
%do i=1 %to &K;
select avg(&YVar) into :Ybar_&i
from &DSin where &XVar = "&&X_&i";
%end;
select var(&YVar) into: SSTO from &DSin;
%let SSTO=%sysevalf(&SSTO *(&N-1));
%let SSR=0;
%let SSE=0;
%do i=1 %to &K;
select var(&YVar) into: ssei
from &DSin where &Xvar="&&X_&i";
%let SSE=%sysevalf(&SSE + &ssei * (&&n_&i - 1)) ;
%let SSR=%sysevalf(&SSR+ &&n_&i * (&&Ybar_&i - &Ybar)*(&&Ybar_&i - &Ybar));
%end;
quit;
%let MSR=%sysevalf(&SSR/(&K-1));
%let MSE=%sysevalf(&SSE/(&N-&K));
%let M_Gr=%Sysevalf(1-(&SSE/&SSTO));
%let M_Fstar=%sysevalf(&MSR/&MSE);
%let M_PValue=%sysevalf(%sysfunc(probf(&M_Fstar,&K-1,&N-&K)));
data result;
M_Gr=&M_Gr.;
M_Fstar=&M_Fstar.;
M_PValue=&M_PValue.;
run;
proc datasets library=work nolist;
delete temp_cats;
run; quit;
%mend;
%CalcGrF(DSin=&DSin., Xvar=&Xvar., YVar=&YVar.);
结果如下:
这个结果显示的是:p值很高,没有什么关联性。具体的解释也可以自行百度哈
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23