
大数据的类别以及制造商和服务提供商所追求的机会
物联网最显著的效益,就是它能极大地扩展我们监控并测量真实世界中发生的事情的能力。工厂经理知道,如果发动机发出呜呜声,就表示出现了问题;一个有经验的房东会知道,烘干机的通风系统可能会被线头塞住,而导致安全隐忧。数据系统最终给予了我们精确了解这些问题的能力。
大数据是当下最热门的科技关键词,但大家对它的认知与定义非常模糊。
然而,挑战在于使这些让信息更有价值的系统,以及不断发展其商业模式。想一下智能恒温器在峰值功率很吃紧的情况下,公用事业单位和第三方能源服务企业想要每分钟准确更新能源消耗情况,通过精确调整能源并最大化节省能源,使得夏季一般日子和节电日能够有明显的区别。但如果把时间缩短到午夜至凌晨四点间,对信息的需求就不是那么急迫了:数据主要在确定长期趋势时才能有价值。
现在从消费者的角度思考。15分钟的数据更新间隔,都有可能导致超负荷。这不仅仅没有价值,还可能会造成贬低它价值的状况。相反,消费者所需要的,不过是一份能够指明一些指数趋势的月报表。
我经常跟人们讨论关于“数据价值”的挑战。下面的列表总结了大数据的一般类别,以及制造商和服务提供商所追求的机会。
五种大数据类型
状态数据
冷冻库中的压缩机是否正常运作?是否有一个已经停止运作了?不用担心,状态资料可以提供供货商和消费者关于物联网的实时动态数据。
状态数据是物联网数据中最普遍、最基础的一种。事实上所有事都会产生类似的数据,并把它作为基础。在许多市场中,状态数据更多地被用作进行更复杂分析的原材料,但它也具有它自身的重要价值。
看看Streetline是怎样找到停车位的。它创造了能够提醒订阅者空余车位的系统。当然,长期的数据能帮助城市规划者,但对于消费者来说,实时状态数据才是最重要的。
定位资料
我的货物到哪儿了?到达目的地了吗?定位服务是GPS应用的必然趋势。GPS非常强大,但在室内、人潮拥挤的地方、以及快速变化的环境中,效果并不明显。那些试图追踪搬运车以及堆高机的人,可能会需要实时的信息。
作为早期的物联网市场,农业领域也需要充分利用位置数据,因为农场主通常需要在很大的地理面积上定位自己的设备。我们已经看到了一些能够帮助人们定位钥匙的消费品出现,这意味着在为商业和工业用户提供服务的领域,存在着更大的市场;尤其是在时间紧迫,或是有大量的资产需要追踪的情况下。Foursquare针对油漆仓库的发展,就是抓住了这样一个巨大的商机。
个性化资料
不要用个人资料的安全性来拒绝个性化数据,个性化数据指的是匿名的个人偏好资料。消费者自然会对自动化产生怀疑,因为比起你的舒适,一些住宅管理系统更关心节省的成本,所以往往会让你困在一个昏暗的办公室者冰冷的饭店客房之中。自动化技术同样也存在安全隐忧。
尽管如此,自动化也是不可避免的。没有人会为了节省几块美元,而不停地用手指来试恒温器的温度。同样,那些依靠手动控制的照明系统也失败了(一些智慧照明生产者希望用他们的传感器数据告诉商店管理者,何时应该打开结账通道)。挑战将围绕开发应用程序和产品规则而展开。
可供行为参考的数据
把这个看作是有后续计划的状态。建筑物耗了整个国家电力的73%,并且其中一大部分(根据EPA显示,最高达到30%)被浪费了。为什么呢?因为对于大多数建筑物的所有者来说:能源是次要的问题。他们虽也想解决这一问题,但担心成本、精力以及一些棘手的局面所产生的损失,将会超出收益。
对于这一问题相应地产生了两种方法:能够改变系统实时状态的自动化技术、能够使人们改变行为习惯或者做长线投资的说服力。Opower开创了关于说服力的解决方案,也就是提供用户及其邻里之间使用能源的对比数据。根据他们自己的研究,这些具有说服力的数据能,使能耗降低2到3个百分点。
用户回馈数据
你了解你的顾客的真实想法吗?你也许认为你了解,但是你可能错了。在不久的将来,生产者还能分析从已售出的产品中获取的数据,从而更加了解产品在现实世界中的使用情况。现在大部分公司并不太了解他们产品的使用状况。这些产品从经销商处装运,从零售商处销售,最后进入了千家万户。而使用者和生产者可能永远都不会有交集。
物联网创造了一个从消费者到生产者的回馈机制,在这里产品生产者可以在保有适度隐私、安全以及抽样来检验产品的实际表现,并鼓励持续的产品改进和创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09