京公网安备 11010802034615号
经营许可证编号:京B2-20210330
留一交叉验证及SAS代码
在数据量很少,用什么模型?我们总结过当数据量很少时如何选择模型和方法,以使得数据能够最大限度的得到利用。
其中有一个方法就是做交叉验证。
我有备选的模型G(x1, x2, x3), G(x1, x5, x6), F(x1, x2, x3),想知道哪一个预测的效果好。不能做样本内预测(就是用样本训练出模型,再用同样的样本代到模型中看准确度),样本量太少,再分成训练集和测试集就更少的可怜了,怎么办?
K折交叉验证可以充分利用少样本的信息。
K折交叉验证是将样本分成K个子样本集,拿出其中的K-1个子样本集来训练模型,用剩下的1个子样本集来对模型进行验证;再拿出K-1个训练模型,留下另外1个(与上一步的不同)子样本集进行验证......,如此交叉验证K次,每个子样本集验证1次,平均K次的结果作为一个模型的预测效果。
而本文想说的留一交叉验证(Leave-one-out cross validation, LOOCV)就是这种方法的极端情况:
假设只有10个样本(真的很小啊),每次拿出其中9个来训练模型,用剩下一个进行测试,得到一个测试结果(真实值与预测值的差异);再拿出另外9个进行训练,留下另外一个进行测试......如此验证10次(每个样本都能轮到一次验证样本),将10次的预测效果平均,就可以评价这个模型的好坏。
留一交叉验证就是留下1个单样本,将其他所有样本拿来做训练。可以充分利用小样本的信息。
下面分享一下数说君留一交叉验证的SAS代码,样本量假设为30:
*样本量30;
%let K=30;
*为数据增加一个变量:index,标识出观测值的ID(从1到30);
data sample;
set sample;
index = _n_;
run;
*用全30个样本建模看一下;
proc reg data=sample;
model y= x1 x2 x3;
run;
data sample_all;
set sample;
selected = .;
replicate = .;
run;
*每次模型将一个样本留作测试,其他用来训练样本,重复30次,那我们就建立30个数据集,并将这30个数据集合在一起;
%macro generateData;
%do i = 1%to &K;
*每次选择一个观测值,其selected=0,意为测试样本,其他29个均为1,意为训练样本。
data temp;
set sample;
if index = &i thenselected = 0;
else selected = 1;
replicate =&i;
run;
data sample_all;
set sample_all temp;
run;
%end;
data sampleOut;
set sample_all;
where selected ^= .;
run;
%mend;
*运行宏;
%generateData;
*slelected=0的样本意为一个数据集中的测试样本,我们看一下是否每个观测值都轮到一次测试;
proc print data=sampleOut;
where Selected=0;
var Selected id;
run;
data sampleOut;
set sampleOut;
if selected then new_y=y;
run;
*计算selected=0的样本、也就是测试样本的预测值;
proc reg data=sampleOut;
model new_y=x1 x2 x3;
by replicate;
outputout=out1(where=(new_y=.)) predicted=y_hat;
run;
data out2;
set out1;
d=y-y_hat;
absd=abs(d);
run;
*画出预测值与真实值的散点图;
proc gplot data=out2;
plot y*y_hat;
run;
proc summary data=out2;
var d absd;
outputout=out3std(d)=rmse mean(absd)=mae sum(d)=sumd;
run;
*计算y与y_hat的相关系数,以及y=y_hat的R方(这个常被用于评价模型的拟合好坏);
proc corr data=out2 pearson out=corr(where=(_TYPE_='CORR'));
var y ;
with y_hat;
run;
data corr;
set corr;
Rsqrd=y**2;
run;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12