
留一交叉验证及SAS代码
在数据量很少,用什么模型?我们总结过当数据量很少时如何选择模型和方法,以使得数据能够最大限度的得到利用。
其中有一个方法就是做交叉验证。
我有备选的模型G(x1, x2, x3), G(x1, x5, x6), F(x1, x2, x3),想知道哪一个预测的效果好。不能做样本内预测(就是用样本训练出模型,再用同样的样本代到模型中看准确度),样本量太少,再分成训练集和测试集就更少的可怜了,怎么办?
K折交叉验证可以充分利用少样本的信息。
K折交叉验证是将样本分成K个子样本集,拿出其中的K-1个子样本集来训练模型,用剩下的1个子样本集来对模型进行验证;再拿出K-1个训练模型,留下另外1个(与上一步的不同)子样本集进行验证......,如此交叉验证K次,每个子样本集验证1次,平均K次的结果作为一个模型的预测效果。
而本文想说的留一交叉验证(Leave-one-out cross validation, LOOCV)就是这种方法的极端情况:
假设只有10个样本(真的很小啊),每次拿出其中9个来训练模型,用剩下一个进行测试,得到一个测试结果(真实值与预测值的差异);再拿出另外9个进行训练,留下另外一个进行测试......如此验证10次(每个样本都能轮到一次验证样本),将10次的预测效果平均,就可以评价这个模型的好坏。
留一交叉验证就是留下1个单样本,将其他所有样本拿来做训练。可以充分利用小样本的信息。
下面分享一下数说君留一交叉验证的SAS代码,样本量假设为30:
*样本量30;
%let K=30;
*为数据增加一个变量:index,标识出观测值的ID(从1到30);
data sample;
set sample;
index = _n_;
run;
*用全30个样本建模看一下;
proc reg data=sample;
model y= x1 x2 x3;
run;
data sample_all;
set sample;
selected = .;
replicate = .;
run;
*每次模型将一个样本留作测试,其他用来训练样本,重复30次,那我们就建立30个数据集,并将这30个数据集合在一起;
%macro generateData;
%do i = 1%to &K;
*每次选择一个观测值,其selected=0,意为测试样本,其他29个均为1,意为训练样本。
data temp;
set sample;
if index = &i thenselected = 0;
else selected = 1;
replicate =&i;
run;
data sample_all;
set sample_all temp;
run;
%end;
data sampleOut;
set sample_all;
where selected ^= .;
run;
%mend;
*运行宏;
%generateData;
*slelected=0的样本意为一个数据集中的测试样本,我们看一下是否每个观测值都轮到一次测试;
proc print data=sampleOut;
where Selected=0;
var Selected id;
run;
data sampleOut;
set sampleOut;
if selected then new_y=y;
run;
*计算selected=0的样本、也就是测试样本的预测值;
proc reg data=sampleOut;
model new_y=x1 x2 x3;
by replicate;
outputout=out1(where=(new_y=.)) predicted=y_hat;
run;
data out2;
set out1;
d=y-y_hat;
absd=abs(d);
run;
*画出预测值与真实值的散点图;
proc gplot data=out2;
plot y*y_hat;
run;
proc summary data=out2;
var d absd;
outputout=out3std(d)=rmse mean(absd)=mae sum(d)=sumd;
run;
*计算y与y_hat的相关系数,以及y=y_hat的R方(这个常被用于评价模型的拟合好坏);
proc corr data=out2 pearson out=corr(where=(_TYPE_='CORR'));
var y ;
with y_hat;
run;
data corr;
set corr;
Rsqrd=y**2;
run;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18