京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简单易学的机器学习算法—集成方法(Ensemble Method)
一、集成学习方法的思想
前面介绍了一系列的算法,每个算法有不同的适用范围,例如有处理线性可分问题的,有处理线性不可分问题。在现实世界的生活中,常常会因为“集体智慧”使得问题被很容易解决,那么问题来了,在机器学习问题中,对于一个复杂的任务来说,能否将很多的机器学习算法组合在一起,这样计算出来的结果会不会比使用单一的算法性能更好?这样的思路就是集成学习方法。
集成学习方法是指组合多个模型,以获得更好的效果,使集成的模型具有更强的泛化能力。对于多个模型,如何组合这些模型,主要有以下几种不同的方法:
在验证数据集上上找到表现最好的模型作为最终的预测模型;
对多个模型的预测结果进行投票或者取平均值;
对多个模型的预测结果做加权平均。
以上的几种思路就对应了集成学习中的几种主要的学习框架。
二、集成学习的主要方法
1、强可学习和弱可学习
在概率近似正确(probably approximately correct, PAC)学习的框架中,一个概念(一个类),如果存在一个多项式的学习算法能够学习它,并且正确率很高,那么就称这个概念是强可学习的。一个概念,如果存在一个多项式的学习算法能够学习它,学习正确率仅比随机猜测略好,那么就称这个概念是弱可学习的。Schapire指出在PAC学习框架下,一个概念是强可学习的充分必要条件是这个概念是弱可学习的。那么对于一个学习问题,若是找到“弱学习算法”,那么可以将弱学习方法变成“强学习算法”。
2、在验证集上找表现最好的模型
这样的方法的思想与决策树的思想类似,在不同的条件下选择满足条件的算法。
3、多个模型投票或者取平均值
在Bagging方法中,让学习算法训练多次,每次的训练集由初始的训练集中随机取出的个训练样本组成,初始的训练样本在某次的训练集中可能出现多次或者根本不出现。最终训练出m个预测函数
,最终的预测函数为h对于分类和回归问题可采用如下的两种方法:
分类问题:采用投票的方法,得票最多的类别为最终的类别
回归问题:采用简单的平均方法

随机森林算法就是基于Bagging思想的学习算法。
4、对多个模型的预测结果做加权平均
在Boosting算法中,初始化时对每个训练样本赋予相等的权重,如
,然后用该学习算法对训练集训练G轮,每次训练后,对训练失败的训练样本赋予更大的权重,也就是让学习算法在后续的学习中几种对比较难学的训练样本进行学习,从而得到一个预测函数序列
,其中每个
都有一个权重,预测效果好的预测函数的权重较大。最终的预测函数为H对于分类和回归问题可采用如下的两种方法:数据分析师培训
分类问题:有权重的投票方式
回归问题:加权平均

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17