
《数学之美》拾遗—TF-IDF
在学习机器学习的过程中,我写了简单易学的机器学习算法的专题,依然还有很多的算法会陆续写出来。网上已经有很多人分享过类似的材料,我只是通过自己的理解,想尽可能用一种通俗易懂的方式讲出来。在不断学习的过程中,陆陆续续补充了很多的知识点,在学习吴军老师的《数学之美》的过程中,也补充了很多我之前遗漏的知识点,吴军老师已经在《数学之美》上把问题讲得很清楚,我在这里只是再增加一些我对这些问题的认识。专题的顺序与原书不一致,其中的原因是我在学习机器学习的过程中遇到了问题会翻阅一些书,所以,顺序与我学习时遇到的问题是相关的。借此机会,感谢那些默默支持我的人,我会更加努力写出高质量的博文。
一、什么是TF-IDF
首先解释下TF-IDF的全称,TF-IDF全称是Term Frequency / Inverse Document Frequency,全称的意思为词频、逆文本频率。
在我们处理文本时,例如,对于一篇文章,文章是由很多的词组成,通过与我们的词库对比,我们可以很容易的过滤掉一些公认的停止词(Stop Word),只保留一些关键词。停止词是指对文章的主题没有任何帮助却在文章中大量出现的一些词,如“的”、“是”等。剩下的关键词也并不是都是同等重要的,我们要确定关键词在文章中的权重,这样我们才能确定文章的主题,此时,我们就可以使用TF-IDF来计算各个关键词的权重。
TF是指一个词在一篇文章中出现的频率。单纯使用TF将会出现一些问题,问题是一些通用的词对于主题并没有太大的作用,反倒是一些出现频率较少的词才能够表达文章的主题。所以权重的设计必须满足:一个词预测主题的能力越强,权重越大,反之,权重越小。所有统计的文章中,一些词只是在其中很少几篇文章中出现,那么这样的词对文章的主题的作用很大,这些词的权重应该设计的较大。IDF就是在完成这样的工作,如果一个关键词W在篇文章中出现,那么
越大,关键词W的权重反倒是越小。最后我们将TF的值和IDF的值综合考虑,便能得到关键词的权重:
。
二、如何计算TF-IDF值
对于一个处理好的词项-文档矩阵:
文章有:d1,d2,d3,d4,d5和d6,关键词有:“ship”,“boat”,“ocean”,“wood”和“tree”。矩阵中的数字表示词在对应文章中出现的次数。
1、TF的计算
TF表示词在一篇文章中出现的频率。这里我们假设每篇文章的词的个数为,。则词“ship”在文章d1中的TF值为:
。其他的可以依次类比。
2、IDF的计算
IDF的公式为:
其中,D表示全部的文章数,表示关键词w出现的文章数。如关键词“ship”在文章d1和d3中出现,则
,而全部的文章数
。则
。
3、TF-IDF的值
TF-IDF的值即为最终的权重,是将TF值与IDF值相乘,则对于关键词“ship”的TF-IDF值为:
三、实际的例子
选择了9个标题:(参考文献2)
The Neatest Little Guide to Stock Market Investing
Investing For Dummies, 4th Edition
The Little Book of Common Sense Investing: The Only Way to Guarantee Your Fair Share of Stock Market Returns
The Little Book of Value Investing
Value Investing: From Graham to Buffett and Beyond
Rich Dad's Guide to Investing: What the Rich Invest in, That the Poor and the Middle Class Do Not!
Investing in Real Estate, 5th Edition
Stock Investing For Dummies
Rich Dad's Advisors: The ABC's of Real Estate Investing: The Secrets of Finding Hidden Profits Most Investors Miss
去掉了停止词“and”,“edition”,“for”,“in”,“little”,“of”“the”,“to”。我们可以得到以下的词项-文档矩阵:
最终的结果为:
MATLAB源码
TF_IDF函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ dataMade ] = TFIDF( dataSet )
[m,n] = size(dataSet);%计算dataSet的大小,m为词的个数,n为标题的个数
%rowSum = sum(dataSet);% 每个标题中关键词的总和
rowSum = [8,6,19,6,8,19,6,4,18];
colSum = sum(dataSet,2);% 每个词在不同标题中出现的总和
dataMade = zeros(m,n);% 构造一个一样大小的矩阵,用于存储TF-IDF值
for i = 1:m
TempIDF = log2(n./colSum(i,:));
for j = 1:n
dataMade(i,j) = (dataSet(i,j)./rowSum(:,j))*TempIDF;
end
end
end
主函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% TF_IDF
% load data
% 注意每一列为标题,每一行为词
dataSet = [0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 1
1 0 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 2 0 0 1
1 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0
];
% 计算TF-IDF值
data = TFIDF(dataSet);
注意点:在参考文献2中有两个问题:数据分析师培训
1、在求解TF时,TF的分母应该是整个文本的长度,可参见维基百科。
2、在求解IDF时,取对数的时应该是以2为底,而不是以为底。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27