
一、数据降维
对于现在维数比较多的数据,我们首先需要做的就是对其进行降维操作。降维,简单来说就是说在尽量保证数据本质的前提下将数据中的维数降低。降维的操作可以理解为一种映射关系,例如函数,即由原来的二维转换成了一维。处理降维的技术有很多种,如前面的SVD奇异值分解,主成分分析(PCA),因子分析(FA),独立成分分析(ICA)等等。
二、PCA的概念
PCA是一种较为常用的降维技术,PCA的思想是将n维特征映射到K维上,这维是全新的正交特征。这K维特征称为主元,是重新构造出来的K维特征。在PCA中,数据从原来的坐标系转换到新的坐标系下,新的坐标系的选择与数据本身是密切相关的。其中,第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选取的是与第一个坐标轴正交且具有最大方差的方向,依次类推,我们可以取到这样的K个坐标轴。
三、PCA的操作过程
1、PCA的操作流程大致如下:
去平均值,即每一位特征减去各自的平均值
计算协方差矩阵
计算协方差矩阵的特征值与特征向量
对特征值从大到小排序
保留最大的K个特征向量
将数据转换到K个特征向量构建的新空间中
2、具体的例子
假设二维数据为
取平均值
我们计算每一维特征的平均值,并去除平均值,我们计算出均值为
去除均值后的矩阵为
计算的协方差矩阵
计算的特征值与特征向量
其中,特征值为
特征向量为
对特征值进行排序,显然就两个特征值
选择最大的那个特征值对应的特征向量
转换到新的空间
四、实验的仿真
我们队一个数据集进行了测试:
MATLAB实验代码如下:
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% pca
dataSet = load('testSet.txt');%导入数据
% pca
[FinalData, reconData] = PCA(dataSet, 1);
%% 作图
hold on
plot(dataSet(:,1), dataSet(:,2), '.');
plot(reconData(:,1), reconData(:,2), '.r');
hold off
PCA函数段
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ FinalData,reconData ] = PCA( dataSet, k )
[m,n] = size(dataSet);
%% 去除平均值
%取平均值
dataSetMean = mean(dataSet);
%减去平均值
dataSetAdjust = zeros(m,n);
for i = 1 : m
dataSetAdjust(i , :) = dataSet(i , :) - dataSetMean;
end
%% 计算协方差矩阵
dataCov = cov(dataSetAdjust);
%% 计算协方差矩阵的特征值与特征向量
[V, D] = eig(dataCov);
% 将特征值矩阵转换成向量
d = zeros(1, n);
for i = 1:n
d(1,i) = D(i,i);
end
%% 对特征值排序
[maxD, index] = sort(d);
%% 选取前k个最大的特征值
% maxD_k = maxD(1, (n-k+1):n);
index_k = index(1, (n-k+1):n);
% 对应的特征向量
V_k = zeros(n,k);
for i = 1:k
V_k(:,i) = V(:,index_k(1,i));
end
%% 转换到新的空间
FinalData = dataSetAdjust*V_k;
% 在原图中找到这些点
reconData = FinalData * V_k';
for i = 1 : m
reconData(i , :) = reconData(i , :) + dataSetMean;
end
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11