京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、数据降维
对于现在维数比较多的数据,我们首先需要做的就是对其进行降维操作。降维,简单来说就是说在尽量保证数据本质的前提下将数据中的维数降低。降维的操作可以理解为一种映射关系,例如函数
,即由原来的二维转换成了一维。处理降维的技术有很多种,如前面的SVD奇异值分解,主成分分析(PCA),因子分析(FA),独立成分分析(ICA)等等。
二、PCA的概念
PCA是一种较为常用的降维技术,PCA的思想是将n维特征映射到K维上,这维是全新的正交特征。这K维特征称为主元,是重新构造出来的K维特征。在PCA中,数据从原来的坐标系转换到新的坐标系下,新的坐标系的选择与数据本身是密切相关的。其中,第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选取的是与第一个坐标轴正交且具有最大方差的方向,依次类推,我们可以取到这样的K个坐标轴。
三、PCA的操作过程
1、PCA的操作流程大致如下:
去平均值,即每一位特征减去各自的平均值
计算协方差矩阵
计算协方差矩阵的特征值与特征向量
对特征值从大到小排序
保留最大的K个特征向量
将数据转换到K个特征向量构建的新空间中
2、具体的例子
假设二维数据为

取平均值
我们计算每一维特征的平均值,并去除平均值,我们计算出均值
为
去除均值后的矩阵为

计算
的协方差矩阵

计算
的特征值与特征向量
其中,特征值为

特征向量为

对特征值进行排序,显然就两个特征值
选择最大的那个特征值对应的特征向量
转换到新的空间

四、实验的仿真
我们队一个数据集进行了测试:

MATLAB实验代码如下:
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% pca
dataSet = load('testSet.txt');%导入数据
% pca
[FinalData, reconData] = PCA(dataSet, 1);
%% 作图
hold on
plot(dataSet(:,1), dataSet(:,2), '.');
plot(reconData(:,1), reconData(:,2), '.r');
hold off
PCA函数段
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ FinalData,reconData ] = PCA( dataSet, k )
[m,n] = size(dataSet);
%% 去除平均值
%取平均值
dataSetMean = mean(dataSet);
%减去平均值
dataSetAdjust = zeros(m,n);
for i = 1 : m
dataSetAdjust(i , :) = dataSet(i , :) - dataSetMean;
end
%% 计算协方差矩阵
dataCov = cov(dataSetAdjust);
%% 计算协方差矩阵的特征值与特征向量
[V, D] = eig(dataCov);
% 将特征值矩阵转换成向量
d = zeros(1, n);
for i = 1:n
d(1,i) = D(i,i);
end
%% 对特征值排序
[maxD, index] = sort(d);
%% 选取前k个最大的特征值
% maxD_k = maxD(1, (n-k+1):n);
index_k = index(1, (n-k+1):n);
% 对应的特征向量
V_k = zeros(n,k);
for i = 1:k
V_k(:,i) = V(:,index_k(1,i));
end
%% 转换到新的空间
FinalData = dataSetAdjust*V_k;
% 在原图中找到这些点
reconData = FinalData * V_k';
for i = 1 : m
reconData(i , :) = reconData(i , :) + dataSetMean;
end
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27