
一、数据降维
对于现在维数比较多的数据,我们首先需要做的就是对其进行降维操作。降维,简单来说就是说在尽量保证数据本质的前提下将数据中的维数降低。降维的操作可以理解为一种映射关系,例如函数,即由原来的二维转换成了一维。处理降维的技术有很多种,如前面的SVD奇异值分解,主成分分析(PCA),因子分析(FA),独立成分分析(ICA)等等。
二、PCA的概念
PCA是一种较为常用的降维技术,PCA的思想是将n维特征映射到K维上,这维是全新的正交特征。这K维特征称为主元,是重新构造出来的K维特征。在PCA中,数据从原来的坐标系转换到新的坐标系下,新的坐标系的选择与数据本身是密切相关的。其中,第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选取的是与第一个坐标轴正交且具有最大方差的方向,依次类推,我们可以取到这样的K个坐标轴。
三、PCA的操作过程
1、PCA的操作流程大致如下:
去平均值,即每一位特征减去各自的平均值
计算协方差矩阵
计算协方差矩阵的特征值与特征向量
对特征值从大到小排序
保留最大的K个特征向量
将数据转换到K个特征向量构建的新空间中
2、具体的例子
假设二维数据为
取平均值
我们计算每一维特征的平均值,并去除平均值,我们计算出均值为
去除均值后的矩阵为
计算的协方差矩阵
计算的特征值与特征向量
其中,特征值为
特征向量为
对特征值进行排序,显然就两个特征值
选择最大的那个特征值对应的特征向量
转换到新的空间
四、实验的仿真
我们队一个数据集进行了测试:
MATLAB实验代码如下:
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% pca
dataSet = load('testSet.txt');%导入数据
% pca
[FinalData, reconData] = PCA(dataSet, 1);
%% 作图
hold on
plot(dataSet(:,1), dataSet(:,2), '.');
plot(reconData(:,1), reconData(:,2), '.r');
hold off
PCA函数段
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ FinalData,reconData ] = PCA( dataSet, k )
[m,n] = size(dataSet);
%% 去除平均值
%取平均值
dataSetMean = mean(dataSet);
%减去平均值
dataSetAdjust = zeros(m,n);
for i = 1 : m
dataSetAdjust(i , :) = dataSet(i , :) - dataSetMean;
end
%% 计算协方差矩阵
dataCov = cov(dataSetAdjust);
%% 计算协方差矩阵的特征值与特征向量
[V, D] = eig(dataCov);
% 将特征值矩阵转换成向量
d = zeros(1, n);
for i = 1:n
d(1,i) = D(i,i);
end
%% 对特征值排序
[maxD, index] = sort(d);
%% 选取前k个最大的特征值
% maxD_k = maxD(1, (n-k+1):n);
index_k = index(1, (n-k+1):n);
% 对应的特征向量
V_k = zeros(n,k);
for i = 1:k
V_k(:,i) = V(:,index_k(1,i));
end
%% 转换到新的空间
FinalData = dataSetAdjust*V_k;
% 在原图中找到这些点
reconData = FinalData * V_k';
for i = 1 : m
reconData(i , :) = reconData(i , :) + dataSetMean;
end
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10