
一、数据降维
对于现在维数比较多的数据,我们首先需要做的就是对其进行降维操作。降维,简单来说就是说在尽量保证数据本质的前提下将数据中的维数降低。降维的操作可以理解为一种映射关系,例如函数,即由原来的二维转换成了一维。处理降维的技术有很多种,如前面的SVD奇异值分解,主成分分析(PCA),因子分析(FA),独立成分分析(ICA)等等。
二、PCA的概念
PCA是一种较为常用的降维技术,PCA的思想是将n维特征映射到K维上,这维是全新的正交特征。这K维特征称为主元,是重新构造出来的K维特征。在PCA中,数据从原来的坐标系转换到新的坐标系下,新的坐标系的选择与数据本身是密切相关的。其中,第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选取的是与第一个坐标轴正交且具有最大方差的方向,依次类推,我们可以取到这样的K个坐标轴。
三、PCA的操作过程
1、PCA的操作流程大致如下:
去平均值,即每一位特征减去各自的平均值
计算协方差矩阵
计算协方差矩阵的特征值与特征向量
对特征值从大到小排序
保留最大的K个特征向量
将数据转换到K个特征向量构建的新空间中
2、具体的例子
假设二维数据为
取平均值
我们计算每一维特征的平均值,并去除平均值,我们计算出均值为
去除均值后的矩阵为
计算的协方差矩阵
计算的特征值与特征向量
其中,特征值为
特征向量为
对特征值进行排序,显然就两个特征值
选择最大的那个特征值对应的特征向量
转换到新的空间
四、实验的仿真
我们队一个数据集进行了测试:
MATLAB实验代码如下:
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% pca
dataSet = load('testSet.txt');%导入数据
% pca
[FinalData, reconData] = PCA(dataSet, 1);
%% 作图
hold on
plot(dataSet(:,1), dataSet(:,2), '.');
plot(reconData(:,1), reconData(:,2), '.r');
hold off
PCA函数段
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ FinalData,reconData ] = PCA( dataSet, k )
[m,n] = size(dataSet);
%% 去除平均值
%取平均值
dataSetMean = mean(dataSet);
%减去平均值
dataSetAdjust = zeros(m,n);
for i = 1 : m
dataSetAdjust(i , :) = dataSet(i , :) - dataSetMean;
end
%% 计算协方差矩阵
dataCov = cov(dataSetAdjust);
%% 计算协方差矩阵的特征值与特征向量
[V, D] = eig(dataCov);
% 将特征值矩阵转换成向量
d = zeros(1, n);
for i = 1:n
d(1,i) = D(i,i);
end
%% 对特征值排序
[maxD, index] = sort(d);
%% 选取前k个最大的特征值
% maxD_k = maxD(1, (n-k+1):n);
index_k = index(1, (n-k+1):n);
% 对应的特征向量
V_k = zeros(n,k);
for i = 1:k
V_k(:,i) = V(:,index_k(1,i));
end
%% 转换到新的空间
FinalData = dataSetAdjust*V_k;
% 在原图中找到这些点
reconData = FinalData * V_k';
for i = 1 : m
reconData(i , :) = reconData(i , :) + dataSetMean;
end
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25