京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、SVD奇异值分解的定义
假设M是一个
的矩阵,如果存在一个分解:

其中
的酉矩阵,
的半正定对角矩阵,
的共轭转置矩阵,且为
的酉矩阵。这样的分解称为M的奇异值分解,
对角线上的元素称为奇异值,
称为左奇异矩阵,
称为右奇异矩阵。
二、SVD奇异值分解与特征值分解的关系
特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征。然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵。
这里,
是方阵,
为单位矩阵,
的特征向量,
的特征向量。
的特征值为M的奇异值的平方。
三、SVD奇异值分解的作用和意义
奇异值分解最大的作用就是数据的降维,当然,还有其他很多的作用,这里主要讨论数据的降维,对于
的矩阵m,进行奇异值分解

取其前r个非零奇异值,可以还原原来的矩阵M,即前R个非零奇异值对应的奇异向量代表了M矩阵的主要特征。可以表示为

五、实验的仿真
我们在手写体上做实验,原始矩阵为

原始矩阵
对应的图像为

对应图像
经过SVD分解后的奇异值矩阵为

部分奇异值矩阵
取前14个非零奇异值

前14个非零奇异值
还原原始矩阵B,还原后的图像为

还原后的图像
对比图像

对比图像
MATLAB代码
[plain] view plain copy
%% 测试奇异值分解过程
load data.mat;%该文件是做好的一个手写体的图片
B = zeros(28,28);%将行向量重新转换成原始的图片
数据分析师培训
for i = 1:28
j = 28*(i-1)+1;
B(i,:) = A(1,j:j+27);
end
%进行奇异值分解
[U S V] = svd(B);
%选取前面14个非零奇异值
for i = 1:14
for j = 1:14
S_1(i,j) = S(i,j);
end
end
%左奇异矩阵
for i = 1:28
for j = 1:14
U_1(i,j) = U(i,j);
end
end
%右奇异矩阵
for i = 1:28
for j = 1:14
V_1(i,j) = V(i,j);
end
end
B_1 = U_1*S_1*V_1';
%同时输出两个图片
subplot(121);imshow(B);
subplot(122);imshow(B_1);
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11