
大数据及物联网让风险管理如虎添翼
企业善用大数据与物联网等科技,可进行有效的风险管理。运用大数据分析,除精算保险费率及揪出诈保、勾稽可疑的股票操作或违法贷款集团,亦可分析金流与人际网以强化洗钱防制。物联网技术则有助掌握诸多风险状况,利于预防抢救,甚至对风险降低提供优惠奖励。
过去一年并不平静,金融危安事件层出不穷,如第一银行ATM遭骇盗款案与兆丰银行防制洗钱疏失案等,风险管理顺势成为热门。据媒体报导,第一银行将出包的ATM机种全数汰换且重新整顿银行信息安全系统,兆丰银行则拟斥资人民币6亿元打造洗钱防制及法遵相关的信息安全系统。
经济不景气的年代,诈欺及各种违法案件特别多,技术也越来越高级,金融业与其他企业均有强化风险管理的需求。有需求就有供给,对于企管顾问与信息科技公司来说,客户端面临层出不穷的危机也可转化为源源不绝的商机,应善加把握。科技有助于风险管理,而以处理风险为主的行业当属保险业,企业可以从保险业的最近发展趋势,探索大数据与物联网等科技强化风险管理的门道。
大数据与保险诈欺
2016年9月间传出警方破获台湾南北两大知名医师涉嫌与保险黄牛勾结,以开立不实诊断证明书的手法协助病患诈领保险金,亦向社保中心申请社保补助,诈领保险金额合计约人民币1300万。本件能够顺利破案的主要关键就是大数据(Big Data),财团法人保险犯罪防制中心透过保险数据库的大数据统计分析,发现有特定保户向特定医院、特定医师求诊且有诸多不寻常现象,乃向警方举报因而破获这起巨额保险诈欺案。
保险业原来就是运用大数法则进行风险评估与保险相关金额(包括保险费、保险金及责任准备金等)的精算。随着大数据数据的海量扩增与分析技术的精进,保险公司更容易借助对特定族群与保险事故相关因素的大数据分析而精算适合的保险费与保险金。在上述保险诈欺案例,保险犯罪防制中心还能透过保险事故与保险金请领相关的大数据数据综合比对分析而勾稽出涉嫌诈领保险金的犯罪集团。此外,保险公司如新光人寿也有导入大数据以研析理赔风险,如建立“坏人模型”:被归类为坏人的客户系经由大数据综合分析后依其风险分数而推测其诈保可能性较高,基此保险公司在核保与出险理赔作业上就可更加谨慎,降低被诈保的风险。
物联网与外溢效果的保单
金融管理机构鼓励保险公司推出外溢效果的保单,不仅对保户提供保险的保障,还可达到健康促进的外溢效果,亦即对于降低保险事故发生机率的保户(如有良好运动习惯者),提供降低保费的优惠。国泰人寿于2016年9月间推出台湾首张外溢效果保单,保户投保后符合健康要求,续期保费可打折,再退还先前溢缴保费作为健康促进奖励金。富邦人寿也向金管申请具有外溢效果的计步保单,多走路可减免保费,只要1年中有120天以上,每天走路达5000步,即可享有保费减免的优惠。
物联网(IoT,如穿戴设备、智能衣、车联网等)有助于推广外溢效果的保单,透过穿戴设备、智能衣量测使用者的行动步数、生理数据,或是透过车联网记录驾驶的使用习惯与车辆状态,可让保险公司衡量保户的风险状况。如果因为保户保持良好的运动与驾驶习惯而可减少生病或车祸意外事故的发生,则可调降保险费,该保单也会比较好销售,具有双赢的效果。
物联网技术与大数据分析的结合运用还可提高预测的准度,保险公司除可更准确地抓出“坏人模型”以合理控制风险之外,亦可建立“好人模型”,亦即将风险较低的客户归类为好人,提供保费优惠也加速理赔审核作业。
科技、商业与风险
风险管理包括风险规避、风险降低、风险转嫁、风险承担等面向,可透过保险安排、契约设计、科技措施、政府介入等方式来处理。由前述保险业的最近发展趋势可知,大数据分析可运用在风险管理上,实务上除了保险之外,在股票市场进行市场监视以查缉内线交易、炒作股票,或是在银行贷款作业揪出诈贷或超贷等犯行,均可利用大数据来勾稽可疑的股票操作或是违法贷款集团,亦可借助综合分析金流与人际关系网以强化洗钱防制。物联网技术则有助于对于诸多风险状况的掌握,风险提高,则进行预防抢救;风险降低,则提供优惠奖励。企业如妥善利用大数据与物联网等科技,应可进行有效的风险管理。
攸关民众财产权益并受到政府高度管制的金融业也跟上数字潮流拥抱FinTech,许多在线金融交易机制与APP理财工具纷纷推出。然而商业运作除了追逐利益外,也会面对各种风险,2016年还爆发乐升公开收购诈欺案、TRF衍生性金融商品不当营销案以及鼎兴集团向诸多银行诈贷案等危安事件。
众多风险之中也可能出现百年难得一见的黑天鹅事件,让公司措手不及。逆转获胜当选美国总统的川普声言要大企业把工作与盈余带回美国,过往靠接单代工的我国厂商即面临巨大的商业风险。面对此种风险,除了大手笔转进到美国设厂投资之外,另一种解决方式是透过产业转型,从代工走向其他创新的商业模式,但是谈何容易。然而如果不创新改变,原有的工作与产业可能会外移或消失。
现今金融业不仅拥抱FinTech,也热情追求RegTech(金融监管科技)!企业亦应建制适当的科技配备以协助主管人员进行风险管理。过往企业主管或抱有眼不见为净的谜团,以为“不知道”就可推卸责任。但随着科技进步以及法制规范的严格要求,装睡不知道的心态恐会被认为重大过失,睁一只眼闭一只眼则是故意纵容。现今企业主管必须善用科技进行风险管理,犹如戴上VR/AR眼镜,仔细检视企业面临的各种风险并进行防范措施,才能风光上场,全身而退。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09