
简单易学的机器学习算法—Logistic回归
一、Logistic回归的概述
Logistic回归是一种简单的分类算法,提到“回归”,很多人可能觉得与分类没什么关系,Logistic回归通过对数据分类边界的拟合来实现分类。而“回归”也就意味着最佳拟合。要进行最佳拟合,则需要寻找到最佳的拟合参数,一些最优化方法就可以用于最佳回归系数的确定。
二、最优化方法确定最佳回归系数
最优化方法有基于梯度的梯度下降法、梯度上升发,改进的随机梯度下降法等等。基于梯度的优化方法在求解问题时,本身对要求解的问题有要求:即问题本身必须是可导的。其次,基于梯度的方法会使得待优化问题陷入局部最优。此时,一些启发式优化方法可以很好的解决这样的问题,但是启发式算法的求解速度较慢,占用内存较大。
对于确定回归系数这样的问题
不存在多峰,也就是说不存在除最优值之外的局部最优值。其次,这样的问题是可求导的,所以基于梯度的方法是可以用来求解回归系数的问题的。优化算法见optimal algorithm类别。
三、Sigmoid函数
当分类边界的函数被表示出来后,可以使用一种被称为海维塞德阶跃函数(Heaviside step function)来处理,简称为单位阶跃函数。其中Sigmoid函数是其中使用较多的一种阶跃函数。Sigmoid函数如下图:
Sigmoid函数的公式为:
当z为0时,函数值为0.5;
四、实验(MATLAB程序)
1、梯度上升法
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%%gradient method
function weights = gradient(x, y)
alpha = 0.001;%Step
maxCycle = 500;
[m,n] = size(x);
weights = ones(n,1);
for i = 1 : maxCycle
h = sigmoid(x * weights);
error = y - h;
weights = weights + alpha * x' * error;%注意点1
end
end
2、Sigmoid
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% sigmoid function
function out = sigmoid(x)
out = 1./(1+exp(-x));
end
3、主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%----start-----
data = load('testSet.txt');%导入数据
[m,n] = size(data);%行和列
o = ones(m,1);
dataX = data(:,1:2);
X = [o,dataX];
Y = data(:,3);
%--experiments--
weights = gradient(X,Y);
%% plot the pic
Ypic = X * weights;
x_1 = X(:,2);
x_2 = X(:,3);
hold on
for i = 1 : 100
if Y(i,:) == 0
plot(x_1(i,:),x_2(i,:),'.g');
else
plot(x_1(i,:),x_2(i,:),'.r');
end
end
x = -3.0:0.1:3;
y = (-weights(1)-weights(2)*x)/weights(3);%注意点2
plot(x,y);
4、测试的数据以及最终的分类
五、注意点
在程序的实现过程中有两个注意点,分别用注释标出,第一处在梯度上升法中的求权重weights的公式;第二处是主程序中的注释标出。
1、先说说第一处:
令,则
。可知
,假设有m个样本,且样本之间相互独立。则似然函数为
。
取对数。对其中一个样本而言求偏导:
。要求极大似然估计,故要使用梯度上升法求最大值:
。数据分析师培训
2、再说说第二处:
要画出拟合直线,横坐标为x_1,纵坐标为x_2,直线的方程为,求出x_1和x_2的对应关系即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18