
一、决策树分类算法概述
决策树算法是从数据的属性(或者特征)出发,以属性作为基础,划分不同的类。例如对于如下数据集
(数据集)
其中,第一列和第二列为属性(特征),最后一列为类别标签,1表示是,0表示否。决策树算法的思想是基于属性对数据分类,对于以上的数据我们可以得到以下的决策树模型
(决策树模型)
先是根据第一个属性将一部份数据区分开,再根据第二个属性将剩余的区分开。
实现决策树的算法有很多种,有ID3、C4.5和CART等算法。下面我们介绍ID3算法。
二、ID3算法的概述
ID3算法是由Quinlan首先提出的,该算法是以信息论为基础,以信息熵和信息增益为衡量标准,从而实现对数据的归纳分类。
首先,ID3算法需要解决的问题是如何选择特征作为划分数据集的标准。在ID3算法中,选择信息增益最大的属性作为当前的特征对数据集分类。信息增益的概念将在下面介绍,通过不断的选择特征对数据集不断划分;
其次,ID3算法需要解决的问题是如何判断划分的结束。分为两种情况,第一种为划分出来的类属于同一个类,如上图中的最左端的“非鱼类”,即为数据集中的第5行和第6行数据;最右边的“鱼类”,即为数据集中的第2行和第3行数据。第二种为已经没有属性可供再分了。此时就结束了。
通过迭代的方式,我们就可以得到这样的决策树模型。
(ID3算法基本流程)
三、划分数据的依据
ID3算法是以信息熵和信息增益作为衡量标准的分类算法。
1、信息熵(Entropy)
熵的概念主要是指信息的混乱程度,变量的不确定性越大,熵的值也就越大,熵的公式可以表示为:
其中为类别在样本s中出现的概率。
2、信息增益(Information gain)
信息增益指的是划分前后熵的变化,可以用下面的公式表示:
其中,a表示样本的属性,是属性所有的取值集合。v是a的其中一个属性值,sv是s中a的值为v的样例集合。
四、实验仿真
1、数据预处理
我们以下面的数据为例,来实现ID3算法:
我们首先需要对数据处理,例如age属性,我们用0表示youth,1表示middle_aged,2表示senior等等。
(将表格数据化)
2、实验结果
(原始的数据)
(划分1)
(划分2)
(划分3)
(最终的决策树)
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% Decision Tree
% ID3
%导入数据
%data = [1,1,1;1,1,1;1,0,0;0,1,0;0,1,0];
data = [0,2,0,0,0;
0,2,0,1,0;
1,2,0,0,1;
2,1,0,0,1;
2,0,1,0,1;
2,0,1,1,0;
1,0,1,1,1;
0,1,0,0,0;
0,0,1,0,1;
2,1,1,0,1;
0,1,1,1,1;
1,1,0,1,1;
1,2,1,0,1;
2,1,0,1,0];
% 生成决策树
createTree(data);
生成决策树
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ output_args ] = createTree( data )
[m,n] = size(data);
disp('original data:');
disp(data);
classList = data(:,n);
classOne = 1;%记录第一个类的个数
for i = 2:m
if classList(i,:) == classList(1,:)
classOne = classOne+1;
end
end
% 类别全相同
if classOne == m
disp('final data: ');
disp(data);
return;
end
% 特征全部用完
if n == 1
disp('final data: ');
disp(data);
return;
end
bestFeat = chooseBestFeature(data);
disp(['bestFeat: ', num2str(bestFeat)]);
featValues = unique(data(:,bestFeat));
numOfFeatValue = length(featValues);
for i = 1:numOfFeatValue
createTree(splitData(data, bestFeat, featValues(i,:)));
disp('-------------------------');
end
end
选择信息增益最大的特征
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 选择信息增益最大的特征
function [ bestFeature ] = chooseBestFeature( data )
[m,n] = size(data);% 得到数据集的大小
% 统计特征的个数
numOfFeatures = n-1;%最后一列是类别
% 原始的熵
baseEntropy = calEntropy(data);
bestInfoGain = 0;%初始化信息增益
bestFeature = 0;% 初始化最佳的特征位
% 挑选最佳的特征位
for j = 1:numOfFeatures
featureTemp = unique(data(:,j));
numF = length(featureTemp);%属性的个数
newEntropy = 0;%划分之后的熵
for i = 1:numF
subSet = splitData(data, j, featureTemp(i,:));
[m_1, n_1] = size(subSet);
prob = m_1./m;
newEntropy = newEntropy + prob * calEntropy(subSet);
end
%计算增益
infoGain = baseEntropy - newEntropy;
if infoGain > bestInfoGain
bestInfoGain = infoGain;
bestFeature = j;
end
end
end
计算熵
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ entropy ] = calEntropy( data )
[m,n] = size(data);
% 得到类别的项
label = data(:,n);
% 处理完的label
label_deal = unique(label);
numLabel = length(label_deal);
prob = zeros(numLabel,2);
% 统计标签
for i = 1:numLabel
prob(i,1) = label_deal(i,:);
for j = 1:m
if label(j,:) == label_deal(i,:)
prob(i,2) = prob(i,2)+1;
end
end
end
% 计算熵
prob(:,2) = prob(:,2)./m;
entropy = 0;
for i = 1:numLabel
entropy = entropy - prob(i,2) * log2(prob(i,2));
end
end
划分数据
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ subSet ] = splitData( data, axis, value )
[m,n] = size(data);%得到待划分数据的大小
subSet = data;
subSet(:,axis) = [];
k = 0;
for i = 1:m
if data(i,axis) ~= value
subSet(i-k,:) = [];
k = k+1;
end
end
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11