京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简单易学的机器学习算法—分类回归树CART
分类回归树(Classification and Regression Tree,CART)是一种典型的决策树算法,CART算法不仅可以应用于分类问题,而且可以用于回归问题。
一、树回归的概念
对于一般的线性回归,其拟合的模型是基于全部的数据集。这种全局的数据建模对于一些复杂的数据来说,其建模的难度也会很大。其后,我们有了局部加权线性回归,其只利用数据点周围的局部数据进行建模,这样就简化了建模的难度,提高了模型的准确性。树回归也是一种局部建模的方法,其通过构建决策点将数据切分,在切分后的局部数据集上做回归操作。
在博文“简单易学的机器学习算法——决策树之ID3算法”中介绍了ID3算法的思想,ID3算法主要是用来处理离散性的问题,然而对于连续型的问题,ID3算法就无能无力了。其次ID3算法的分支也属于多分支,即通过一个特征可以分出很多的子数据集。分类回归树(Classification and Regression Tree, CART)是一种树构建算法,这种算法既可以处理离散型的问题,也可以处理连续型的问题。在处理连续型问题时,主要通过使用二元切分来处理连续型变量,即特征值大于某个给定的值就走左子树,或者就走右子树。
二、回归树的分类
在构建回归树时,主要有两种不同的树:
回归树(Regression Tree),其每个叶节点是单个值
模型树(Model Tree),其每个叶节点是一个线性方程
三、基于CART算法的回归树
在进行树的左右子树划分时,有一个很重要的量,即给定的值,特征值大于这个给定的值的属于一个子树,小于这个给定的值的属于另一个子树。这个给定的值的选取的原则是使得划分后的子树中的“混乱程度”降低。如何定义这个混乱程度是设计CART算法的一个关键的地方。在ID3算法中我们使用的信息熵和信息增益的概念。信息熵就代表了数据集的紊乱程度。对于连续型的问题,我们可以使用方差的概念来表达混乱程度,方差越大,越紊乱。所以我们要找到使得切分之后的方差最小的划分方式。数据分析师培训
四、实验仿真
对于数据集1,数据集2,我们分别使用CART算法构建回归树

(数据集1)

(数据集2)
从图上我们可以看出可以将数据集划分成两个子树,即左右子树,并分别在左右子树上做线性回归。同样的道理,下图可以划分为5个子树。
结果为:

(数据集1的结果)

(数据集2的结果)
MATLAB代码:
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% CART
clear all
clc
% 导入数据集
%dataSet = load('ex00.txt');
dataSet = load('ex0.txt');
% 画图1
% plot(dataSet(:,1),dataSet(:,2),'.');
% axis([-0.2,1.2,-1.0,2.0]);
% 画图2
% plot(dataSet(:,2),dataSet(:,3),'.');
% axis([-0.2,1.2,-1.0,5.0]);
createTree(dataSet,1,4);
构建子树
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ retTree ] = createTree( dataSet,tolS,tolN )
[feat,val] = chooseBestSplit(dataSet, tolS, tolN);
disp(['feat:', num2str(feat)]);
disp(['value:', num2str(val)]);
if feat == 0
return;
end
[lSet,rSet] = binSplitDataSet(dataSet, feat, val);
disp('left:');
createTree( lSet,tolS,tolN );
disp('right:');
createTree( rSet,tolS,tolN );
end
最佳划分
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ Index, Value ] = chooseBestSplit( dataSet, tolS, tolN )
% 参数中tolS是容许的误差下降值,tolN是切分的最小样本数
m = size(dataSet);%数据集的大小
if length(unique(dataSet(:,m(:,2)))) == 1%仅剩下一种时
Index = 0;
Value = regLeaf(dataSet(:,m(:,2)));
return;
end
S = regErr(dataSet);%误差
bestS = inf;%初始化,无穷大
bestIndex = 0;
bestValue = 0;
%找到最佳的位置和最优的值
for j = 1:(m(:,2)-1)%得到列
b = unique(dataSet(:,j));%得到特征所在的列
lenCharacter = length(b);
for i = 1:lenCharacter
temp = b(i,:);
[mat0,mat1] = binSplitDataSet(dataSet, j ,temp);
m0 = size(mat0);
m1 = size(mat1);
if m0(:,1) < tolN || m1(:,1) < tolN
continue;
end
newS = regErr(mat0) + regErr(mat1);
if newS < bestS
bestS = newS;
bestIndex = j;
bestValue = temp;
end
end
end
if (S-bestS) < tolS
Index = 0;
Value = regLeaf(dataSet(:,m(:,2)));
return;
end
%划分
[mat0, mat1] = binSplitDataSet(dataSet, bestIndex ,bestValue);
m0 = size(mat0);
m1 = size(mat1);
if m0(:,1) < tolN || m1(:,1) < tolN
Index = 0;
Value = regLeaf(dataSet(:,m(:,2)));
return;
end
Index = bestIndex;
Value = bestValue;
end
划分
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 将数据集划分为两个部分
function [ dataSet_1, dataSet_2 ] = binSplitDataSet( dataSet, feature, value )
[m,n] = size(dataSet);%计算数据集的大小
DataTemp = dataSet(:,feature)';%变成行
%计算行中标签列的元素大于value的行
index_1 = [];%空的矩阵
index_2 = [];
for i = 1:m
if DataTemp(1,i) > value
index_1 = [index_1,i];
else
index_2 = [index_2,i];
end
end
[m_1,n_1] = size(index_1);%这里要取列数
[m_2,n_2] = size(index_2);
if n_1>0 && n_2>0
for j = 1:n_1
dataSet_1(j,:) = dataSet(index_1(1,j),:);
end
for j = 1:n_2
dataSet_2(j,:) = dataSet(index_2(1,j),:);
end
elseif n_1 == 0
dataSet_1 = [];
dataSet_2 = dataSet;
elseif n_2 == 0
dataSet_2 = [];
dataSet_1 = dataSet;
end
end
%% 将数据集划分为两个部分
function [ dataSet_1, dataSet_2 ] = binSplitDataSet( dataSet, feature, value )
[m,n] = size(dataSet);%计算数据集的大小
DataTemp = dataSet(:,feature)';%变成行
%计算行中标签列的元素大于value的行
index_1 = [];%空的矩阵
index_2 = [];
for i = 1:m
if DataTemp(1,i) > value
index_1 = [index_1,i];
else
index_2 = [index_2,i];
end
end
[m_1,n_1] = size(index_1);%这里要取列数
[m_2,n_2] = size(index_2);
if n_1>0 && n_2>0
for j = 1:n_1
dataSet_1(j,:) = dataSet(index_1(1,j),:);
end
for j = 1:n_2
dataSet_2(j,:) = dataSet(index_2(1,j),:);
end
elseif n_1 == 0
dataSet_1 = [];
dataSet_2 = dataSet;
elseif n_2 == 0
dataSet_2 = [];
dataSet_1 = dataSet;
end
end
偏差
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ error ] = regErr( dataSet )
m = size(dataSet);%求得dataSet的大小
dataVar = var(dataSet(:,m(:,2)));
error = dataVar * (m(:,1)-1);
end
叶节点
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ leaf ] = regLeaf( dataSet )
m = size(dataSet);
leaf = mean(dataSet(:,m(:,2)));
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27