京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据结构和算法—动态规划
我一直最想做的就是机器学习,所以也都是在报机器学习的岗位,在BAT三家公司中,其实还是要讲百度吧,因为阿里在一面的时候就挂了,给我的理由是我投错了岗位(据面试官讲我应该去投算法岗,但我投的是数据挖掘),后来我在想,其实还就是我没能达到她的语气要求;腾讯就别讲了,连面试都没收到(据说这个岗位不招我们学校的),这可能就是个猜测吧。重点说说百度的笔试和面试吧,单纯从技术上来讲,因为我在做机器学习嘛,百度还是我最心仪的公司。这次百度的招聘分为笔试+面试(三个技术面+Hr面),我挂在了最后一个技术面上,先来说说武汉的笔试吧,当然笔试题我做得还是蛮开心的,因为最后一道证明题可以说还是我平时的强项吧,面试中,前两面都还好,面得比较基础,包括基本的数据结构,算法,然后是机器学习的算法理解,不同算法之间的对比,这也正是我平时做的一些工作,这样的过程还是蛮舒服的,整个流程下来,我觉得问题不是很大。最后一关就是很多实际的项目问题,由于我自己平时项目较少,加之自己的导师不是做机器学习的,没做过具体的机器学习相关项目,只是将算法学习的比较全。
我写以上的东西也是给找工作的朋友一个建议,也是给自己一个醒目的教训,多去实践,所以这段时间我还是会努力更新我的博客,当然不完全是前面的机器学习算法,现在将包括更多的东西,我会把我现在在做的项目也慢慢更新上来,然后又基本的算法的学习材料,希望关注我博客的朋友,大家一起努力,我不是科班出身,但是我希望大家不吝赐教,有你的帮助我会成长的更快。
好了,就写到这吧。我想还是从一些算法开始入手吧,今天还是来更新一篇动态规划的文章。
一、动态规划的思想
动态规划(dynamic programming)是一种算法设计的思想,主要是将一个问题划分成几个更小的问题,并对这样更小的问题进行求解,最终得到整个问题的解。有人在想这样的方式和分治法的求解很像。
动态规划:各个子问题不是独立的,他们包含了公共子问题
分治法:一个大问题是被划分成一些独立的子问题,通过递归地求解子问题最终得到整个问题的解
在动态规划法中,与其对交叠的子问题一次一次求解,不如对每个较小的子问题只求解一次并把结果记录在表中,这样就能从表中得到原始问题的解。举个简单的例子,对于菲波那切数列来说:

对于这样的递推式,可以把一个复杂的问题分解成几个非独立的子问题,我们可以采用的方式是记录每一组值,如斐波那契数列的值依次是0,1,1,2,3,5,...。而不需要重复去计算。
二、用动态规划求解二项式系数
二项式系数问题是一个求解
的问题。我们有如下的递推式:

要计算
的值,我们需要记录
到
之间的值。动态规划的核心思想就是要找到这样的递推式,然后构建这样的存储空间去记录中间的值,避免重复计算。最简单的方式是利用数组去记录。数据分析师培训
如上的问题可以用下面的Java代码实现:
[java] view plain copy 在CODE上查看代码片派生到我的代码片
package org.algorithm.dynamicprogramming;
/**
* 利用动态规划的思想去求解二项式系数的问题
*
* @author dell
*
*/
public class CalculateDemo {
/**
* 用动态规划计算C(n,k)
*
* @param n为二项式的参数
* @param k为二项式的参数
* @return C(n,k)的值
*/
public static int calBinomial(int n, int k) {
int C[][] = new int[n+1][k+1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= minValue(i, k); j++) {
if (j == 0 || j == i) {
C[i][j] = 1;
} else {
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
}
}
return C[n][k];
}
// 返回较小的值
public static int minValue(int i, int k) {
return (i <= k ? i : k);
}
public static void main(String args[]) {
int n = 10;
int k = 5;
System.out.println(calBinomial(n, k));
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30