
持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。
本次分享我将以教培行业为例,围绕三个核心板块展开说明,分别是销售场景的数据洞察、销售战略与战术应用、销售闭环与数字化增长运营。
通过对销售场景中的数据进行深入分析,我们可以挖掘出许多有价值的信息,从而为企业的决策提供有力支持。
根据过往数据,2024年教培行业的市场规模约为2000亿元,这表明该行业规模依然庞大。与此同时,教培行业每年新增约5万家机构,但其存活率并不理想。许多机构在招生初期便暴露出运营不善的问题,导致客户流失,最终难以为继。
一方面,对于用户而言,其可选择的范围非常广泛,既可以是线上教育,也可以是线下教育。因此,其可替代性较强。但另一方面,在考试方面,目前大约50%的学生进入职高,50%进入高中,家长和学生对于教育的刚性需求依然存在。
行业当前痛点分析:
“双减”政策前,部分教育机构会通过切片广告引导用户留下联系方式,这些线索随后被转交给销售顾问进行跟进。然而,如果销售顾问在四个小时内未能与潜在客户进行有效沟通,这些线索就会被浪费。
在教育行业,试听课环节存在一些问题,这些问题可称为“试听泡沫”。家长在试听过程中十分关注孩子是否能积极参与课堂。
例如,在线下试听时,家长会通过玻璃观察孩子是否被试听老师吸引,是否会分心。家长还特别关注试听老师是否与后续上课老师一致,以及老师是否能抓住孩子的注意力。这些因素直接影响家长对机构的评价。试听课内容也直接关系到转化率。
教育机构的收费多为预收款,但实际到账金额需基于消耗课时核算。如果客户退费率高,会导致机构现金流断裂。因此,管理客户预期、不过度承诺至关重要。
从流量线索到试听,再到签约,整个过程如同漏斗。
针对行业痛点,我们提出一个破题公式:成交效能 = 精准度 × 痛点命中率 ÷ 风险成本。精准度越高、痛点命中率越高、客户风险越低,成交效能就越高。
这一公式适用于B端销售、高价决策以及咨询类服务等需要更多说服和议价的场景,但对于标准化快消品等低价高频产品则不适用。
例如,假设精准度为0.8,痛点命中率为0.7,风险成本为0.5,根据公式计算,成交效能为1.12,这表明该策略具有较好的成交效能。
对数据分析漏斗感兴趣的,通过刷题、学习来掌握数据分析模型和方法。
在激烈的市场竞争中,制定合理的销售战略并灵活运用各种战术是企业取得成功的关键。
信任度是成交的基础,一旦丧失,后续转化将极为困难。因此,要重视销售战略与战术应用。
在销售战略与战术方面,动态分级是重要策略之一。根据“二八定律”,应将80%的精力放在20%的重要客户上。通过分层和贴标签,识别客户的优先级。
例如,一位客户频繁访问网站、多次在线咨询并索要学习方案,可被标注为高优先级客户,其决策权可能高达90%。
通过分析客户行为数据,快速识别并跟进此类客户,可在黄金48小时内促成交易。若未能及时跟进,客户可能转向其他机构,导致流失率上升。
实战沙盘演练也是有效手段。通过分析每月客户数据和营收情况,筛选出优先级高的客户,进一步优化转化流程。智能筛选系统可辅助识别有效客户,避免无效沟通。
例如,对于30天以上未跟进的客户数据,可重新分配至公海,由新的顾问跟进,确保客户得到及时服务。
在销售过程中,还需关注退费率和现金流断裂的预警。避免过度承诺,确保客户了解实际情况,以维持机构正常运营。
同时,通过五维客户价值模型评估客户优先级,包括响应速度、支付信号、教育焦虑值、决策链路和历史行为。
响应速度反映客户积极性;支付信号表明客户购买意愿;教育焦虑值越高,客户越渴望快速交易;决策链路需明确关键决策人;历史行为可判断客户再次选择的可能性。
通过这五个维度,可精准识别客户优先级,提高成交率。
在当今数字化时代,构建完整的销售闭环并借助数字化手段实现增长运营,对于企业的可持续发展具有重要意义。
信任度是成交的基础,一旦丧失,后续转化将极为困难。销售闭环构建与数字化增长运营是教培行业的关键环节。要从数据收集到客户转化,再到持续服务与反馈收集,形成完整闭环。
此外,预期管理至关重要。以思维培养课程为例,我们会提前告知客户,前四次课是孩子从陌生到熟悉、从玩耍到专注的适应期。在此期间,若客户不满意,可退费。
透明的预期管理,能有效避免客户因期望过高而产生的不满与投诉,保障校区稳定运营。同时,清晰的服务条款,明确允许与支持的内容,有助于稳定客户关系,进而稳定现金流。
销售闭环与数字化运营的前提是建立在数据洞察和分析策略的基础上,业务数据分析,Excel,SQL,多维数据处理,统计学以及PowerBI数据可视化。
如果大家想听黄老师完整版分享视频,可以点击下方链接。
学习入口:https://edu.cda.cn/goods/show/3855?targetId=6777&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10