京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简单易学的机器学习算法—Rosenblatt感知机的对偶解法
一、Rosenblatt感知机回顾
在博文“简单易学的机器学习算法——Rosenblatt感知机”中介绍了Rosenblatt感知机的基本概念。Rosenblatt感知机是针对线性可分问题的二分类算法。通过构造分离超平面将正类和负类区分开。构造了如下的输入空间到输出空间的函数:

其中,w为权重,b为偏置。
为符号函数:

求解这个函数的重点就是求解函数中的参数:和。Rosenblatt感知机通过构造损失函数,并求得使得这样的损失函数达到最小时的w和b。
其中,
为:
这里的为所有误分类的点的集合。我们的目标是求得损失函数的最小值:。
通过梯度下降法(详细请见“简单易学的机器学习算法——Rosenblatt感知机”),我们得到了w和b的更新公式:

其中,
为学习率。
二、Rosenblatt感知机的对偶形式
对偶形式的基本想法是,将w和b表示为实例
的线性组合的形式,通过求解其系数而求得
。
通过上面的
的更新公式,我们发现,
是一个累加的过程。如果令
,则
可以表示为:
其中,
。
此时的感知机模型就变为:
三、算法流程
初始化,
选择误分类数据点,即
,更新a和b

直到没有误分类的点,否则重复步骤2
计算出
四、实验的仿真
利用博文“简单易学的机器学习算法——Rosenblatt感知机”中的数据集,原始数据集如下图所示:

(原始数据点)
MATLAB代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% Rosenblatt感知机的对偶解法
clear all;
clc;
%读入数据
x=[3,3;4,3;1,1];
y=[1;1;-1];
[m,n] = size(x);%取得数据集的大小
%% 画出原始的点
hold on
axis([0 5 0 5]);%axis一般用来设置axes的样式,包括坐标轴范围,可读比例等
for i = 1:m
plot(x(i,1),x(i,2),'.');
end
%% 初始化
alpha = zeros(1,m);
b = 0;
yita = 1;%学习率
gram = zeros(m,m);
%% 计算Gram矩阵
for i = 1:m
for j = 1:m
gram(i,j)=x(i,:)*x(j,:)';
end
end
%% 更新
for i = 1:m
tmp = 0;
for j = 1:m
tmp = tmp + alpha(j)*y(j)*gram(i,j);
end
tmp = tmp + b;
tmp = y(i)*tmp;
if tmp <= 0
alpha(i) = alpha(i)+yita;
b = b + y(i);
end
end
% 要使得数据集中没有误分类的点
flag = 0;%标志位,用于标记有没有误分类的点
i = 1;
while flag~=1
while i <= 3
tmp = 0;
for j = 1:m
tmp = tmp + alpha(j)*y(j)*gram(i,j);
end
tmp = tmp + b;
tmp = y(i)*tmp;
if tmp <= 0
alpha(i) = alpha(i)+yita;
b = b + y(i);
i = 1;%重置i
break;
else
i = i+1;
end
if i == 4
flag = 1;
end
end
end
%% 重新计算w和b
for i = 1:m
x_new(i,:) = x(i,:) * y(i);
end
w = alpha * x_new;
%% 画出分隔线
x_1 = (0:3);
y_1 = (-b-w(1,1)*x_1)./w(1,2);
plot(x_1,y_1);
最终的分离超平面:

(最终分离超平面)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12