京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情感体验。
通俗来讲,用户旅程图是一个发现用户痛点并解决痛点的工具。它鼓励以用户的视角来展示用户的整个行为旅程,从用户的触发点开始,经过各种交互和体验,直到达到目标或完成任务。
通过过绘制用户旅程图,可以帮助到产品团队更好地了解用户的需求和体验,找到改进和优化产品的机会,以提供更好的用户体验和满足用户的期望,从而为企业创造更多的商业价值。

在进入正题前,我们首先要认识到:数据本身并不能传达客户在体验产品中所经历的挫折或惊喜。因此我们首先要思考两个问题:
是什么促使了产品用户的需求?
是什么让用户犹豫使用这个产品?
分析了以上两个问题后才能更好地理解用户体验。要想更加简单清晰地阐述上述两个问题,这个时候就可以通过用户旅程分析来进行展示说明。

如上图,用户旅程除了可以遍历整个用户体验的过程,还可以用它来遍历任何问题的发生过程「Before, During, After」,以便找到解决方案或者优化问题。
示例场景:
招聘过程:在招聘某人之前,之中和之后会发生什么?
获得产品客户:获取客户之前,之中和之后会发生什么?
市场营销:客户购买之前,期间或之后发生什么?
简而言之,用户旅程能够使你更快地定位解决问题,同时便于使团队达成共识。其背后的逻辑是,每个人都在脑海中经历过这个过程,人们会在心智上建立自己的问题地图,并逐步解决它们。
用户旅程的主要工作就是列出所有事情,并将其映射到每个人都可以使用的结构中。
用户旅程图是将一个人完成某个目标而经历的所有过程和行为,作为一种可视化工具直接、清晰地描述了人机交互时的体验。

其优势包括:
宏观地查看用户体验时的心路历程。
直观地呈现出用户的痛点,以便分析产品/服务在各环节中的优劣。
深度了解用户行为,协助用户分类。
从图中调整信息架构,进一步更新产品以优化用户体验。
通过创建可视化地图,项目团队可以更加清晰地进行用户旅程分析,有效地推动后续业务协作。
用户旅程图的适用性非常地广泛,可以应用在各行各业,无论是产品、服务、应用程序还是其他领域,都可以通过用户旅程图来更好理解用户体验过程、帮助我们发现问题和改进机会。

比如宜家或超市的人流动线设计,车站和机场的出入口标识牌设计、软件产品使用体验、硬件产品的使用体验等等,都可以使用用户旅程图来进行分析。
用户旅程地图通常包含6个组成要素:用户角色,阶段,行为目标,触点,情感,需求和痛点。

用户角色:指用户在使用产品或服务时扮演的角色,如潜在用户,新用户,忠实用户,竞对用户等。
阶段:指用户旅程中以时间或事件而划分出的不同阶段,例如意识阶段,考察阶段,浏览阶段,对比阶段,购买阶段和使用阶段等。
行为目标:指用户在每个阶段中的目标和期望,例如搜索信息,对比产品,购买产品或获得支持等。
触点:指用户与产品或服务进行互动的各种渠道和方式,例如渠道:网站,应用程序,社交媒体,热线电话,电子邮件等;方式:电脑,手机等。
情感:用户在每个阶段的情感表现,包括满足,困惑,兴奋,失望等。
需求和痛点:用户在每个阶段所面临的需求,期望和障碍。
一般而言,一种典型用户画像对应一个或者多个用户旅程图,因为往往每种用户使用软件的目的和行为都不一样,每种都会有一个用户旅程。但是某些特殊情况,如行为链路上,行为模式相似,就可归为一起。
用户旅程图绘制主要分为五大步骤:

确定客户画像是一切工作的前提,客户旅程地图是基于客户画像,并对客户与产品或服务互动的全过程进行展示。可以通过客户访谈、市场观察、模拟环境、客户日记等方式对客户进行定性,但是需要注意的是,我们的客户喜好是多变的,不同时间、不同客户角色的需求和痛点也会存在差异,对应的客户画像也要与时俱进。

通过客户画像,企业可以了解目标客户的需求、偏好与痛点,从而了解客户的购买目标。要了解购买目标还可以通过汇总客户测试反馈、使用客户分析工具等等方式。

触点是指客户与产品交互的关键点,客户在购买产品前、中、后与品牌接触的任何一点都值得被注意,包括网站访问、社交媒体互动、客户电话等等。站在客户视角复现客户旅程可以帮你更好地识别触点。
客户旅程需要包含客户动作的各个关键阶段,例如了解阶段、考虑阶段、购买阶段、使用阶段、售后阶段等。每个阶段的数据都需要被完整收集,包括搜集客户在每一个操作时的想法、见解与情绪,你可以将想法和情绪曲线相结合,方便你更快速的辨别各个阶段痛点。

客户在持续地变化和发展,客户旅程地图绘制好后需要定期完善和更新,自己或邀请客户过一遍来进行验证可以发现更多的问题。除此以外,每当产品或服务有重大改动时,客户旅程地图也需相应调整。
用户旅程图中的图例可以分为:流向型图例、分割型图例、图标型图例、线型图等4种类型。
流向型主要是指用户旅程的流转示意,用户与产品的互动关系等。通常是用箭头表示,指明了行动的流向,上下游之间的关系。

分割型图例指的是将画面划分为不同区域的线段或形状。用户旅程图在横向层面,有用户不同操作环节的划分,可以用泳道图来示意;在纵向层面,有业务、接触点、用户、产品服务、后台、支持系统等层次的划分,通过实线段来示意。

用户旅程图中的图标型图例,主要包含用户体验三个层级的icon,分别代表了:
用户体验好
体验一般/感受弱
体验欠佳/较差
在颜色上也有一定的区分度,用绿色代表好,橙色代表一般,红色代表不好;再配合情绪曲线的绘制,可以很清晰地看到用户痛点和产品的待优化点。

用户旅程图中的线型图例,特指情绪曲线,用一条连续的折线段表示出来,可以看到用户在整个行为流程中的情绪变化。

总的来说,无论哪种客户旅程地图都应该从客户的角度出发,更深入地了解客户需求,最终提供更优质的客户体验。

在当今这个被数据洪流席卷的时代,数据已成为企业运营与决策的核心驱动力。当前,数据分析已成为衡量职业竞争力的重要标尺。它不再是数据分析师的专属技能,而是每一位职场人士都应掌握的通用语言,是提升工作效率、优化决策质量、推动业务增长的关键所在。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。

CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27