
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年不断有人涌入,也有人并不看好。
对于想转行,尤其是30岁以后想转行数据分析岗的伙伴而言,了解行业的发展趋势、掌握行业入门技能非常有必要。
数据分析需要掌握的技能和知识点不少,但如果非要选择一个技能,我认为是数据可视化能力。
数据可视化旨在借助于图形化手段,清晰有效地传达与沟通信息。它包括图表、图形、信息图、动画和其他有助于简化数据的元素。其目的在于以一种易于理解并吸引受众的方式呈现复杂的数据,让用户更容易识别数据中的模式、趋势、异常值,从而更好的分析数据。
相比于冗长的文字描述,可视化的数据图表能让各类信息一目了然地呈现出来。数据可视化图表在增强信息传达效率,帮助我们在瞬间抓住受众的注意力方面功不可没。
首先,能突出变化发展趋势。例如,在展示年度销售数据时,一个简洁的柱状图可以清晰地对比各季度销售额的高低,让观众一眼就能看出销售趋势,而无需花费时间去解读繁琐的表格数据。
其次,能精准突出关键信息。通过精心设计的图表,能非常好地突出关键信息。如折线图展示时间序列数据的变化趋势、饼图呈现各部分占总体的比例关系等,能够将数据中的关键信息和潜在规律直观地呈现出来。这有助于决策者快速聚焦重点,发现问题或机会。
再次,能提高分析表达效率。提升数据的可理解性对于非专业人士或数据素养较低的受众,复杂的数据表格可能晦涩难懂。而图表可视化模板以图形化的方式呈现数据,使信息更易于理解和消化,降低了数据理解的门槛,促进了信息的广泛传播与共享。
如何将复杂的数据变得更直观,帮助用户从海量信息中提取出关键信息?这是数据分析最基本的要求,而数据可视化能很好地解决这个问题。
深入了解受众是谁,他们的知识水平、技术专长以及期望和目标。基于这些信息,采用适当的格式和设计来呈现数据。
设计数据可视化时,简单性至关重要,整体信息应该非常清晰,没有任何混乱。
删除对受众没有意义的信息。在数据如此丰富的时代,我们必须对展示的内容进行筛选。任何不能强化数据观点的内容都应该从可视化中删除。
减少不必要的设计元素。不需要添加额外的设计元素(如3D元素)来丰富可视化,虽然它看起来很高端,但并不直观易懂。
保持风格的统一性。实施醒目且一致的配色方案、清晰且大小合适的字体,同时利用空白、网格和边距来组织页面布局。大标题、图例和标签也有助于更清楚地解释内容。
3.选择正确的图表类型
不同的数据适合不同的图表类型。例如,折线图是显示趋势的首选,散点图用于揭示关系和相关性,而饼图或圆环图则常用于显示百分比。
根据数据的特性选择合适的图表类型,能够更好地突出数据的重点。
柱状图:适合比较不同类别的数据。
折线图:适合展示时间序列数据的变化趋势。
散点图:用于展示两个变量之间的关系。
热力图:适合展示数据的密度或集中程度。
仪表盘:综合展示多个关键指标,便于快速了解整体情况。
文本在数据可视化中起着重要的补充作用。它包括标签、简短说明段落、标题、图例等形式。但是要注意,无论何时,文本都应服务于提升数据解读的清晰度,而不是分散对数据本身的注意力。
除自己创建数据可视化外,我们还可以考虑引入新一代数据可视化分析工具,它不仅提供了可视化,还集成了数据分析功能,可以有效帮助用户更深入的进行数据探索和洞察。
数据可视化操作步骤并不复杂,难的是如何从海量数据中选取你想要的信息,其关键还在于数据思维的培养。
Tableau Public 是一个免费平台,可以创建和公开分享数据可视化,拥有全球范围内规模极大的数据可视化库。
其功能非常强大,具体包括:
提供了丰富的图形和交互式工具,可以轻松将数据转化为图表,无需编程即可进行复杂的数据分析和挖掘。
具有强大的互动性,同学们可以通过单击、悬停或筛选等方式与数据进行交互。
可以将创建的数据可视化作品嵌入到网页、博客或社交媒体中进行分享。
如果您也想做数据分析类的工作,可以测测自己的数据分析能力,欢迎挑战。
Plotly 的强大之处在于它能够创建出既美观又具有高度交互性的图表,交互式图表,支持Python、R和MATLAB 等多种编程语言。
具有丰富的交互功能,如缩放、拖动、悬停等,能够更深入地探索数据。
提供了多种美观的图表模板和样式选项,使得图表不仅准确传达信息,还具有吸引力,对于美赛画图来说是非常好的利器。
支持多种编程语言,包括 Python、R 和JavaScript,方便不同背景的用户使用。
提供了一个在线编辑器(Plotly Dash),用户可以在其中创建和共享交互式图表。
是一款功能强大的在线图形计算器,以其直观的操作界面和丰富的数学功能而闻名,深受数学爱好者、教育工作者和学生的喜爱。
Desmos提供了多种功能,包括绘图、科学计算、不等式处理、表格处理和统计学分析等,支持LaTeX语法。
绘图功能:能够绘制多种图形,并且不受表达式数量的限制
交互性:提供滑块工具,让用户能够动态调整参数。
数据处理:支持输入数据并绘制图形,生成函数的输入-输出表格。
科学计算:处理复杂的数学运算,如平方根、对数和绝对值。
Visme提供了大量的图片、小图标、模板、字体,供用户制作演示文稿、图表和报告。有了Visme,你可以随时随地查看和呈现你的内容。
可以制作信息图表、报告文件,还是幻灯片模版素材、指示板/控制面板、地图,专业的信息图表和数据可视化工具,拥有丰富的模板库。
可以使用模板创建多种类型的信息图、图表和地图,而且所有的操作都是在网页端完成的。
交互式图表、工具提示、可点击的链接和标签等功能,可以更好地理解和互动。
无需编程技能即可创建专业的数据可视化图表。其智能数据导入向导和简单的操作步骤,使得即使是初学者也能快速上手。
想转行数据分析岗并不难,大家平常可以利用上面提到的数据可视化网站和工具进行自学,也可以通过培训或备考来提升自己的技能水平。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25