京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物联网大数据将给智能交通带来什么
数据量的攀升已经正在推动一个全新时代的到来,大数据时代的到来其实是随着数据量的增长所带来的必然结果。我们都知道,互联网时代以及电子商务等领域的崛起已经把人类的数据通信带入到了PB级,因此在很多场景当中,大数据通常就已经变成用来形容大量非结构化的半结构化数据的一种方式和一个代名词。
云计算是继1980年代大型计算机到客户端-服务器的大转变之后的又一巨变,而近些年随着智慧城市概念的兴起,在整个智慧城当中的重要环节,智能交通系统正在逐渐成为未来交通系统的主要发展方向。
先来普及一下,我们所谓的智能交通系统就是通过将信息技术、数据通讯传输技术、电子传感技术、控制技术及计算机技术等有效地集成运用于交通管理之中,从而建立一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。在整个系统当中融合了交通设施、减少交通负荷和环境污染、保证交通安全以及提高运输效率等一系列过程。
大数据带给智能交通什么
根据我们国内权威的调查机构研究结果表明,在1950年的时候,全球只有约31%的人口居住在城市当中,而到了2008年,城市人口在世界总人口当中的比例已经达到了50%,而按照这一趋势进行预测,到了2050年,全世界将有70%的人口在城市中定居。换句话来说,无论是喜欢还是厌恶,我们中的大多数人注定要与城市相伴相生。
拿我们国内的具体交通现状来举例,2013年京藏高速55公里的大堵车再次震惊了世界;2014年首都北京多了“首堵”新外号,上榜多国的世界拥堵城市排行榜前几名。中国的交通拥堵问题又被空前关注起来。
而对于大数据在交通行业当中的具体应用时,政府部门主要开始采取了几类措施,公共交通部门发行的一卡通大量使用,因此积累了乘客出行的海量数据,这也是大数据的一种,由此,公交部门会计算出分时段、分路段、分人群的交通出行参数,甚至可以创建公共交通模型,有针对性的采取措施提前制定各种情况下的应对预案,科学的分配运力。
交通管理部门在道路上预埋或预设物联网传感器,实时收集车流量、客流量信息,结合各种道路监控设施及交警指挥控制系统数据,由此形成智慧交通管理系统。
通过卫星地图数据对城市道路的交通情况进行分析,得到道路交通的实时数据,这些数据可以供交通管理部门使用,也可以发布在各种数字终端供出行人员参考,来决定自己的行车路线和道路规划。
智能手机已经很普及,多数智能手机都会使用地图应用,于是始终打开GPS或北斗定位系统,地图提供商将收集到的这些数据进行大数据分析,由此就可以分析出实时的道路交通拥堵状况、出行流动趋势或特定区域的人员聚集程度,这些数据公布之后会给出行提供参考。
从上述这几项针对交通拥堵等重点交通行业问题的解决办法我们不难发现,现在不管是企业还是政府部门都已经开始在利用大数据和云计算等技术来对城市当中,尤其是交通行业的很多问题进行重点改善和提升了。
大数据在交通行业应用现状
有很多业界的专家学者表示,虽然我们国内现在的云计算和大数据技术已经变得比较成熟和先进了,但是同样也显现出了不少发展的问题,在智慧城市以及智慧交通发展过程当中,各个城市的发展状况参差不齐,使得智能交通在智慧城市应用当中的潜在价值还没有得到有效挖掘。
同时,对交通信息的感知和收集有限,对存在于各个管理系统中的海量的数据无法共享运用、有效分析,对交通态势的研判预测乏力,对公众的交通信息服务很难满足需求。
尽管现在已经基本实现了数字化,但是数字化和数据化还根本不是一回事,只是局部的提高了采集、存储和应用的效率,本质上并没有太大的改变。而大数据时代的到来必然带来破解难题的重大机遇。大数据必然要求我们改变小数据条件下一味的精确计算,而是更好的面对混杂。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11