京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从朴素贝叶斯分类器到贝叶斯网络
一、贝叶斯公式(一些必备的数学基础)
贝叶斯(Thomas Bayes)是生活在十八世纪的一名英国牧师和数学家。因为历史久远,加之他没有太多的著述留存,今天的人们对贝叶斯的研究所知甚少。唯一知道的是,他提出了概率论中的贝叶斯公式。但从他曾经当选英国皇家科学学会会员(类似于院士)来看,他的研究工作在当时的英国学术界已然受到了普遍的认可。
事实上,在很长一段时间里,人们都没有注意到贝叶斯公式所潜藏的巨大价值。直到二十世纪人工智能、机器学习等崭新学术领域的出现,人们才从一堆早已蒙灰的数学公式中发现了贝叶斯公式的巨大威力。为了方便后续内容的介绍,这里我们先来简单复习一下概率论中的一些基本知识。
事件A在另外一个事件B已经发生条件下的发生概率,称为条件概率,记为P(A|B)。
两个事件共同发生的概率称为联合概率。A与B的联合概率表示为 P(AB) 或者P(A,B)。
进而有,P(AB) = P(B)P(A|B)=P(A)=P(B|A)。这也就导出了最简单形式的贝叶斯公式,即
P(A|B)=P(B|A)*P(A)/P(B)
以及条件概率的链式法则
P(A1,A2,...,An) = P(An|A1,A2,...,An-1)P(An-1|A1,A2,...,An-2)...P(A2|A1)P(A1)
概率论中还有一个全概率公式
由此可进一步导出完整的贝叶斯公式
二、朴素贝叶斯分类器(Naïve Baysian classifier)
分类是机器学习和数据挖掘中最基础的一种工作。假设现在我们一组训练元组(Training tuples),或称训练样例,以及与之相对应的分类标签(Class labels)。每个元组都被表示成n维属性向量X=(x1, x2, ..., xn)的形式,而且一共有K个类,标签分别为C1, C2, ..., Ck。分类的目的是当给定一个元组X时,模型可以预测其应当归属于哪个类别。
朴素贝叶斯分类器的原理非常简单,就是基于贝叶斯公式进行推理,所以才叫做“朴素”。对于每一个类别Ci, 利用贝叶斯公式来估计在给定训练元组X时的条件概率p(Ci|X),即
P(Ci|X) = P(X|Ci)P(Ci)/P(X)
当且仅当概率P(Ci|X)在所有的P(Ck|X)中取值最大时,就认为X属于Ci。更进一步,因为P(X)对于所有的类别来说都是恒定的,所以其实只需要P(Ci|X) = P(X|Ci)P(Ci)最大化即可。
应用朴素贝叶斯分类器时必须满足条件:所有的属性都是条件独立的。也就是说,在给定条件的情况下,属性之间是没有依赖关系的。即
为了演示贝叶斯分类器,来看下面这个例子。我们通过是否头疼、咽痛、咳嗽以及体温高低来预测一个人是普通感冒还是流感。
上面是我们提供的训练数据。现在有一个病人到诊所看病,他的症状是:severeheadache, no soreness, normaltemperature and with cough。请问他患的是普通感冒还是流感?分析易知,这里的分类标签有Flu 和Cold两种。于是最终要计算的是下面哪个概率更高。
P( Flu| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
≅P(Flu)*P(Headache= severe|Flu)*P(Sore= no|Flu)*P(Temperature= normal |Flu)*P(Cough = yes|Flu)
P( Cold| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
≅P(Cold)*P(Headache= severe|Cold)*P(Sore= no|Cold)*P(Temperature= normal |Cold)*P(Cough = yes |Cold)
为了计算上面这个结果,我们需要通过已知数据(训练数据)让机器自己“学习”(建立)一个“模型”。由已知模型很容以得出下表中的结
以及
e= small value = 10^-7(one can use e to be less than 1/n where n is the number of training instances)
P( Flu| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
= P(Flu)*P(Headache = severe|Flu)*P(Sore= no|Flu)*P(Temperature = normal |Flu)*P(Cough = yes|Flu)
= 3/5 × 2/3 × e × 2/3 × 3/3 = 0.26e
P( Cold| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
~ P(Cold)*P(Headache =severe|Cold)*P(Sore = no|Cold)*P(Temperature = normal |Cold)*P(Cough = yes|Cold)
= 2/5 × e × ½ × 1 × ½ = 0.1e
显然P(Flu) > P(Cold),所以我们的诊断(预测,分类)结果是 Flu。
最后讨论一下朴素贝叶斯分类器的特点(来自网上资料总结,我就不翻译了):
我们将把贝叶斯网络留待下一篇文章中介绍(未完,待续...)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28