
从朴素贝叶斯分类器到贝叶斯网络
一、贝叶斯公式(一些必备的数学基础)
贝叶斯(Thomas Bayes)是生活在十八世纪的一名英国牧师和数学家。因为历史久远,加之他没有太多的著述留存,今天的人们对贝叶斯的研究所知甚少。唯一知道的是,他提出了概率论中的贝叶斯公式。但从他曾经当选英国皇家科学学会会员(类似于院士)来看,他的研究工作在当时的英国学术界已然受到了普遍的认可。
事实上,在很长一段时间里,人们都没有注意到贝叶斯公式所潜藏的巨大价值。直到二十世纪人工智能、机器学习等崭新学术领域的出现,人们才从一堆早已蒙灰的数学公式中发现了贝叶斯公式的巨大威力。为了方便后续内容的介绍,这里我们先来简单复习一下概率论中的一些基本知识。
事件A在另外一个事件B已经发生条件下的发生概率,称为条件概率,记为P(A|B)。
两个事件共同发生的概率称为联合概率。A与B的联合概率表示为 P(AB) 或者P(A,B)。
进而有,P(AB) = P(B)P(A|B)=P(A)=P(B|A)。这也就导出了最简单形式的贝叶斯公式,即
P(A|B)=P(B|A)*P(A)/P(B)
以及条件概率的链式法则
P(A1,A2,...,An) = P(An|A1,A2,...,An-1)P(An-1|A1,A2,...,An-2)...P(A2|A1)P(A1)
概率论中还有一个全概率公式
由此可进一步导出完整的贝叶斯公式
二、朴素贝叶斯分类器(Naïve Baysian classifier)
分类是机器学习和数据挖掘中最基础的一种工作。假设现在我们一组训练元组(Training tuples),或称训练样例,以及与之相对应的分类标签(Class labels)。每个元组都被表示成n维属性向量X=(x1, x2, ..., xn)的形式,而且一共有K个类,标签分别为C1, C2, ..., Ck。分类的目的是当给定一个元组X时,模型可以预测其应当归属于哪个类别。
朴素贝叶斯分类器的原理非常简单,就是基于贝叶斯公式进行推理,所以才叫做“朴素”。对于每一个类别Ci, 利用贝叶斯公式来估计在给定训练元组X时的条件概率p(Ci|X),即
P(Ci|X) = P(X|Ci)P(Ci)/P(X)
当且仅当概率P(Ci|X)在所有的P(Ck|X)中取值最大时,就认为X属于Ci。更进一步,因为P(X)对于所有的类别来说都是恒定的,所以其实只需要P(Ci|X) = P(X|Ci)P(Ci)最大化即可。
应用朴素贝叶斯分类器时必须满足条件:所有的属性都是条件独立的。也就是说,在给定条件的情况下,属性之间是没有依赖关系的。即
为了演示贝叶斯分类器,来看下面这个例子。我们通过是否头疼、咽痛、咳嗽以及体温高低来预测一个人是普通感冒还是流感。
上面是我们提供的训练数据。现在有一个病人到诊所看病,他的症状是:severeheadache, no soreness, normaltemperature and with cough。请问他患的是普通感冒还是流感?分析易知,这里的分类标签有Flu 和Cold两种。于是最终要计算的是下面哪个概率更高。
P( Flu| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
≅P(Flu)*P(Headache= severe|Flu)*P(Sore= no|Flu)*P(Temperature= normal |Flu)*P(Cough = yes|Flu)
P( Cold| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
≅P(Cold)*P(Headache= severe|Cold)*P(Sore= no|Cold)*P(Temperature= normal |Cold)*P(Cough = yes |Cold)
为了计算上面这个结果,我们需要通过已知数据(训练数据)让机器自己“学习”(建立)一个“模型”。由已知模型很容以得出下表中的结
以及
e= small value = 10^-7(one can use e to be less than 1/n where n is the number of training instances)
P( Flu| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
= P(Flu)*P(Headache = severe|Flu)*P(Sore= no|Flu)*P(Temperature = normal |Flu)*P(Cough = yes|Flu)
= 3/5 × 2/3 × e × 2/3 × 3/3 = 0.26e
P( Cold| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
~ P(Cold)*P(Headache =severe|Cold)*P(Sore = no|Cold)*P(Temperature = normal |Cold)*P(Cough = yes|Cold)
= 2/5 × e × ½ × 1 × ½ = 0.1e
显然P(Flu) > P(Cold),所以我们的诊断(预测,分类)结果是 Flu。
最后讨论一下朴素贝叶斯分类器的特点(来自网上资料总结,我就不翻译了):
我们将把贝叶斯网络留待下一篇文章中介绍(未完,待续...)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03